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Abstract
A family of concave distortion functions is a set of concave and increas-

ing functions, mapping the unity interval onto itself. Distortion functions
play an important role defining coherent risk measures. We prove that
any family of distortion functions which fulfils a certain translation equa-
tion, can be represented by a distribution function. An application can be
found in actuarial science: moment based premium principles are easy to
understand but in general are not monotone and cannot be used to com-
pare the riskiness of different insurance contracts with each other. Our
representation theorem makes it possible to compare two insurance risks
with each other consistent with a moment based premium principle by
defining an appropriate coherent risk measure.
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1 Introduction
Concave distortion functions play a very important role in insurance and finan-
cial mathematics. They are used to define coherent risk measures, as introduced
axiomatically by Artzner et al. (1999). Risk measures are for example applied
by insurances to compute the premium of an insurance contract or may describe
a potential loss from a capital investment.

A concave distortion function widely used in actuarial science is the WANG-
transform, defined by

(1) Ψγ
WANG(u) = Φ(Φ−1(u) + γ), u ∈ [0, 1], γ ≥ 0,
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which involves the standard cumulative normal distribution Φ and its inverse,
see Wang (2000).

In this article, generalizations of the WANG-transform play a special role: we
will prove a representation theorem and show that a family of concave distortion
functions (FCDF) satisfying a certain translation equation can be represented
by a distribution function G.

It is well known that the coherent risk measure induced by the WANG-
transform reduces to the standard deviation premium principle for normal dis-
tributed random variables. Our representation theorem helps to interpret gen-
eral FCDF in a similar spirit.

An application of this theorem can be found in insurance science. Premium
principles in actuarial science are used to determine the premium an insured
has to pay to the insurance company in return for an insurance contract. For
example the premium can be calculated by the expected loss of the insured
object plus a multiple of the standard deviation of the loss. Such moment based
premium principles are easy to understand but in general are not monotone
and cannot be used to compare the riskiness of different insurance contracts
with each other. Our representation theorem makes it possible to compare
two insurance risks with each other consistent with a moment based premium
principle by defining an appropriate coherent risk measure.

In particular, we answer the following question: if an insurance company
insures risk X for a certain premium and the premium is computed using a
classical moment based premium principle, what would be an adequate pre-
mium for another risk Z consistent with the premium of X? We are able to
answer this question even if Z as infinite second moments. Consistency be-
tween the premium for X and for Z is measured using performance measures
as axiomatically introduced by Cherny and Madan (2009).

In Section 2 we define a coherent risk measures via concave distortion func-
tions. In Section 3 the translation equation for a family of concave distortion
functions (FCDF) is defined. In Section 4 we present our main theorem, which
provides a connection between FCDF and distribution functions. We discuss
under which conditions a general FCDF can be reparameterized into a FCDF
satisfying a translation equation and provide various examples. In Section 5
we construct a coherent risk measure which makes it possible to compare two
insurance risks with each other consistent with a moment based premium prin-
ciple.

2 Coherent Risk Measures
A coherent risk measure maps the set of bounded random variables to the real
numbers fulfilling four axioms:

Definition 2.1. (Coherent risk measure). A map ρ : L∞ → R is called a
coherent risk measure if it satisfies the following properties for all X, Y ∈ L∞:

R1: Cash invariance: ρ(X + c) = ρ(X) + c for any c ∈ R.
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R2: Monotonicity: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ).

R3: Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for 0 ≤ λ ≤ 1.

R4: Positive homogeneity: ρ(λX) = λρ(X) where 0 ≤ λ.

Throughout this article, we assume that a random variable Y describes the loss
of a financial position, not a net worth. Coherent risk measures can be seen as
premium principles in insurance science.

Let Ψ be a concave, increasing function, mapping the unity interval onto
itself such that Ψ(0) = 0 and Ψ(1) = 1. Ψ is called distortion function. Ac-
cording to Föllmer and Schied (2011, Theorem 4.70 and Theorem 4.93), see also
Kusuoka (2001), a law invariant and comonotonic coherent risk measure can be
defined for Y ∈ L∞(Ω, F ,P) by

ρΨ(Y ) =
0
ˆ

−∞

(Ψ (P [Y > y]) − 1) dy +
∞̂

0

Ψ (P [Y > y]) dy(2)

= Ψ(0+)ess sup {Y } +
1
ˆ

0

F −1
Y (y)dΨ̂(y),(3)

where we define the convex dual distortion by

Ψ̂(u) = 1 − Ψ(1 − u).

The value
Ψ(0+) := lim

ε↓0
Ψ(ε)

denotes the jump-size at u = 0 of the distortion function and

ess sup {Y } := inf {m ∈ R : m ≥ Y, P − a.s.}

describes the essential supremum of Y . We say the risk measure ρΨ is induced by
the distortion function Ψ. If Ψ is equal to the identity, it holds ρΨ(Y ) = E[Y ].
Remark 2.2. If the distortion function Ψ is continuous and differentiable with
bounded derivative, the functional ρΨ is well defined on L1, see Pichler (2013).
Remark 2.3. Some authors define a coherent risk measure via Equation (2),
see Wang (2000, eq. (2)) and Tsanakas (2004, eq. (3)). Acerbi (2002) and
Tsukahara (2009, eq. (1.1)) among others work with the convex dual distortion
and use Equation (3) to define coherent risk measures. In contrast to actuarial
science, in the financial literature, it is common to interpret a random variable
as the net worth of a financial position. A coherent risk measure is then defined
via a concave distortion function by ρΨ(−.), i.e. the sign is changed, see for
example Artzner et al. (1999), Kusuoka (2001), Cherny and Madan (2009) and
Föllmer and Schied (2011).
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3 Family of Concave Distortion Functions
Often, one would like work with a parametric family of risk measures (ργ)γ≥0,
where γ models the view of the risk manager: the greater γ, the more con-
servative the risk measure ργ . For example Wang (1995) and Wang (2000)
proposed the proportional hazard transform and the WANG-transform as dis-
tortion functions for insurance premium calculation of an insurance risk X ≥ 0.
The premium is computed according to Equation (2). Both distortions depend
on a single parameter γ: the premium of a risk is thus a function of γ and
varies continuously between the smallest and greatest reasonably premium: the
expected value and maximal value of X. The insurance company may choose
γ depending on many external circumstances and the risk-attitude of the com-
pany. Wang (2000) proposed that possible changes in court rulings or in the
interest rate yield curve, moral hazards by insurance buyers and competition
with other insurance companies, should be taken into consideration when choos-
ing the parameter γ.

Another use of a family of risk measures is discussed in Cherny and Madan
(2009), who proved that an acceptability index, which measures the performance
of a future random cash flow, can be represented by an increasing family of
coherent risk measures.

If the parametric family of risk measures is induced by distortion functions,
we need to work with a family of concave distortion functions, which is defined
as follows:
Definition 3.1. A family of concave distortion functions (FCDF) (Ψγ)γ≥0 is
a set of functions Ψγ : [0, 1] → [0, 1] that are monotonically increasing and
concave for all γ ≥ 0 and for which Ψγ(0) = 0 and Ψγ(1) = 1. Moreover the
family is monotonically increasing and continuous at γ, i.e. it holds that for all
u ∈ [0, 1]: Ψγ1(u) ≤ Ψγ2(u) for γ1 ≤ γ2 and the map γ 7→ Ψγ(u) is continuous
for all u ∈ [0, 1].

We note that the map u 7→ Ψγ(u) is continuous on (0, 1] for all γ ≥ 0 but
might jump at zero, see Rockafellar (1970, Theorem 10.1). Let us additionally
assume the following conditions:
[E] It holds Ψ0(u) = u, for u ∈ [0, 1].

[W] It holds lim
γ→∞

Ψγ(u) = 1, for u ∈ (0, 1].

[T] It holds Ψγ2 (Ψγ1 (u)) = Ψγ1+γ2 (u), for γ1, γ2 ≥ 0 and u ∈ [0, 1].
The interpretation of Definition 3.1 is the following: the greater γ, the greater
the distortion and the more conservative the risk measure induced by Ψγ . Con-
ditions [E] and [W] are quite natural: it is usually desirable that for γ = 0
no distortion occurs, the risk measure induced by Ψ0 should be equal to the
expectation operator.

For γ → ∞ the risk measure induced by Ψγ should converge to the worst-
case risk measure, i.e. Ψγ(u) should converge to 1 for u > 0, which is expressed
in condition [W].
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Condition [T] means distorting the probability u first at level γ1 and then
at level γ2 is the same as distorting the probability once at level γ1 + γ2. This
condition is called translation equation in functional equation theory, see Aczél
(1966, Section 6.1.1.).

4 Duality between Distortion and Distribution
Functions

In the following theorem, we present our main result: a relationship between
distribution functions and FCDF. An application to insurance science can be
found in Section 5.

Theorem 4.1. Let (Ψγ) be a FCDF. Let u0 ∈ (0, 1). The following two state-
ments are equivalent.

i) The FCDF (Ψγ) satisfies conditions [E], [W] and [T].

ii) There exists a unique distribution function G, such that G (0) = u0 and

(4) Ψγ(u) = G(G−1(u) + γ), γ ≥ 0, u ∈ (0, 1).

Proof. The proof is devoted to the Appendix.

Remark 4.2. For a given distribution function G a family of functions (Ψγ)
defined by Equation (4) is a FCDF if g = G′ is log-concave, see Tsukahara
(2009, p. 697). The function g is called log-concave if log(g) is concave. See
Dharmadhikari and Joag-Dev (1988) for log-concavity and related topics.

The constant u0 mentioned in the theorem can be chosen arbitrarily: if G
induces Ψγ then also the shifted distribution G̃(x) := G(x + µ) for any µ ∈ R
induces Ψγ . Hence we could reformulate Theorem 4.1 and say that G is unique
up to location translation. The distribution function G can be identified by

(5) G(x) =
{

Ψx (u0) , x ≥ 0
Ψ−x (u0) , x < 0,

where Ψγ is the generalized inverse of the function u 7→ Ψγ(u), in particular for
γ ≥ 0

Ψγ : [0, 1] → [0, 1]
p 7→ inf {u ∈ [0, 1] : Ψγ(u) ≥ p} .

Remark 4.3. Based on results from functional equation theory, see Aczél (1966,
Section 6.1.), Tsukahara (2009) obtained a similar result, under the additional
assumptions that the FCDF is continuous in the variable u and strictly increas-
ing in the variable γ and that G is strictly increasing. Tsukahara works with
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the convex dual of the concave distortion function Ψ to define coherent risk
measures, see Remark 2.3. Examples 4.4 - 4.7 provide various FCDF used in
practise, which are not continuous at u = 0 or are not strictly increasing in the
variable γ but can be represented by a distribution function. Some of those
FCDF are applied in Section 5 to actuarial science and we develop a new FCDF
using the gamma distribution, which includes the expected shortfall and the
WANG-transform as special cases.

We provide four examples of FCDF satisfying conditions [E], [W] and [T].
The four distortions are also shown in Figure 1.
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Figure 1: Distortion Functions from Examples 4.4 - 4.7. We set γ = 1. Ψ2
denotes the generalized inverse of Ψ2. The jump-size of Ψ2 at zero is defined by
p̃γ and the point, where Ψ2 first reaches one, is defined by ũγ .

Example 4.4. The following FCDF is not continuous at u = 0. Let

Ψγ
1(u) :=

{
0 , u = 0
1 − (1 − u)e−γ , u > 0,

The FCDF (Ψγ
1) is called “ess sup-expectation convex combination” by Bannör

and Scherer (2014) because the coherent risk measure induced by (Ψγ
1) involves
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a convex combination of the essential supremum and the ordinary expectation.
Bannör and Scherer (2014) applied this FCDF to calibrate a non-linear pricing
model to quoted bid-ask prices. (Ψγ

1)γ≥0 is induced by the exponential distri-
bution function

G1(x) =
{

1 − e−x , x > 0
0 , otherwise.

Example 4.5. Let

Ψγ
2(u) :=

{
0 , u = 0
min

(
u + γ

λ , 1
)

, u > 0.

This FCDF is induced by the uniform distribution function on
[
− λ

2 , λ
2
]

for any
λ > 0.

Example 4.6. The FCDF corresponding to the expected shortfall at level e−γ ∈
(0, 1], see e.g. Föllmer and Schied (2011, Example 4.71), can be defined by

Ψγ
3(u) := min(ueγ , 1).

This FCDF is induced by the distribution G3(x) = min(ex, 1), x ∈ R and is
increasing in the variable γ but not strictly increasing.

Let X be exponential distributed. It holds

ρΨγ
3
(X) = E[X](1 + γ),

i.e. the expected shortfall reduces to the expected value premium principle when
applied to exponential risks.

The next example is also applied in Section 5.

Example 4.7. Let
Ψγ

4(u) := G̃(G̃−1(u) + γ),

The FCDF (Ψγ
4) is similar to the WANG-transform but replacing the normal

distribution function by the function

G̃(x) = 1 − Γα,β

(
−

√
α

β
x

)
, x < 0,

where Γα,β is the gamma distribution with shape α and rate β. (Ψγ
4) generalizes

the expected shortfall: for α = 1 and β = 1, (Ψγ
3) and (Ψγ

4) are identical.
Setting β :=

√
α, (Ψγ

4) converges to the WANG-transform for large α. We will
see in Example 5.3, that the coherent risk measure induced by (Ψγ

4), reduces to
the standard deviation premium principle when applied to gamma distributed
random variables.
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Cherny and Madan (2009) introduced four FCDF: the MAXVAR and MIN-
VAR distortions, which are reparametrizations of the power distortion and its
dual, the proportional hazards distortion, see Wang (1995, 1996), and the MIN-
MAXVAR and MAXMINVAR, which are compositions of the former two.

None of those FCDF satisfies condition [T], but as we shall see, sometimes
it is possible find a reparametrization, such that the reparameterized FCDF
does satisfy condition [T] and hence can be represented by a distribution func-
tion. In the following definition we state more precisely what we mean by a
reparametrization.
Definition 4.8. We say that the FCDF

(
Ψ̃γ

)
γ≥0 is a reparametrization of the

FCDF (Ψγ)γ≥0 if there exist bijective function

t : [0, ∞) → [0, ∞)

such that t(0) = 0 and

Ψt(γ)(u) = Ψ̃γ(u), u ∈ [0, 1], γ ≥ 0.

Example 4.9. The MAXVAR FCDF is defined by Ψγ
MAXVAR(u) = u

1
1+γ and

there is a slight modification which indeed satisfies condition [T], in particular
let

Ψ̃γ
MAXVAR(u) := uexp(−γ),

which is a reparametrization of Ψγ
MAXVAR. By Theorem 4.1, the FCDF

(
Ψ̃γ

MAXVAR
)

is induced by the distribution function

FMAXVAR(x) = e− exp(−x), x ∈ R,

which is the Gumbel distribution with location zero and scale one.
Example 4.10. The MINVAR FCDF is defined by Ψγ

MINVAR(u) = 1−(1−u)γ+1

and can be represented after a reparametrization by 1 − G(−x), where G is the
Gumbel distribution function with location zero and scale one. Let X be a
Gumbel distributed random variable with location µ and scale σ > 0. X has
distribution function

FX(x) = e− exp(− x−µ
σ ), x ∈ R.

It holds
ρΨ̃γ

MINVAR
(X) = E[X] + σγ

i.e. the coherent risk measures induced by the MINVAR FCDF and applied to
a Gumbel distributed random variable X can be expressed by a linear mapping
of the expectation of X.

We have seen in Example 4.9 and 4.10 that the MAXVAR and MINVAR
FCDF defined by Cherny and Madan (2009) do not satisfy the condition [T] but
there exist a reparametrization satisfying condition [T]. The following proposi-
tion is useful to check whether a FCDF can be reparameterized into a FCDF
satisfying condition [T].
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Proposition 4.11. Let (Ψγ) be a FCDF. If there exist a reparametrization(
Ψ̃γ

)
which satisfies condition [T], then it holds

(6) Ψγ1 (Ψγ2(u)) = Ψγ2 (Ψγ1(u)) , γ1, γ2 ≥ 0, u ∈ [0, 1],

i.e. the original FCDF is permutable.

Proof. Let γ1, γ2 ≥ 0 and u0 ∈ [0, 1]. Then it follows

Ψγ1 (Ψγ2(u0)) = Ψ̃t(γ1)
(

Ψ̃t(γ2)(u0)
)

= Ψ̃t(γ1)+t(γ2)(u0) = Ψγ2 (Ψγ1(u0)) ,

for a suitable function t.

Example 4.12. Simple numerical examples and Proposition 4.11 show that
the following FCDF

Ψγ
MINMAXVAR(u) = 1 −

(
1 − u

1
1+γ

)1+γ

,

Ψγ
MAXMINVAR(u) =

(
1 − (1 − u)γ+1) 1

γ+1 ,

cannot be reparameterized into a FCDF satisfying condition [T], i.e. cannot be
represented by a distribution function.

5 Application: Coherent Risk Measures and Mo-
ment Based Premium Principles

A coherent risk measure ρ is a map from set of bounded random variables to the
real numbers describing the riskiness of future random cash flows. In insurance
science we are usually dealing with nonnegative random variables describing for
example the possible financial loss due to a natural disaster. In an insurance
context, we call a nonnegative random variable X insurance risk or just risk
and the value ρ(X) a premium.

It is possible to apply our representation result Theorem 4.1 to compare
different insurance risks with each other. Let us assume an insurance company
is insuring a risk, which can be described by a nonnegative random variable X.
The amount of money charged by the insurer to the insured for the coverage
of the loss due to the risk X, is called the risk-adjusted premium, excluding
acquisition or internal expenses.

There are several method for assigning a risk-adjusted premium to the risk
X. The premium could be defined via a coherent risk measure by ρ(X). But
many premium principles used in practice are equal to the expected value of the
risk plus some security loading, so called moment based premium principles:

the Expected Value Premium is defind by E[X] + γE[X],
the Standard Deviation Premium is defind by E[X] + γ

√
Var(X),

and the Variance Premium is defind by E[X] + γVar(X),
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where γ ≥ 0, see Straub (1988), Daykin et al. (1994) and Rolski et al. (2009).
The moment based premium principles are not coherent, the standard deviation
premium principle for example is not monotone, i.e. two different risks cannot
really be compared with each other1. But for a particular random variable X,
it is possible to construct a FCDF (Ψγ

X), such that for a fixed ξ > 0 it holds

ρΨγ
X

(X) = E[X] + γξ, γ ≥ 0.

The value ρΨγ
X

(X) is equal to a particular moment based premium of X for all
γ ≥ 0 if ξ ∈ {E[X],

√
Var(X), Var(X)}. What are the benefits? An insurance

which mainly insures a risk X and uses a moment based premium principle to
assign a premium to X, might wish to compare risk X to another risk Z, which
can be archived by comparing the values ρΨγ

X
(X) and ρΨγ

X
(Z) with each other.

On the one hand, the moment based premium principles are not coherent,
they are arguably not very well suited to compare different risks with each other.
They may even be infinite, e.g. if the second moments of Z do not exist.

On the other hand, moment based premium principles are easy to understand
and explain to policyholders. That is why the insurance may use a moment
based premium principle in the first place, to compute the premium of the risk
X.

Note that already Wang (2000) observed that the WANG-transform leads
to the standard deviation premium principle, if X is normal distributed. Our
representation result for FCDF makes a straightforward computation of Ψγ

X

possible, in particular for nonnegative and skewed random variables X.

5.1 Construction of a Coherent Risk Measure Reproduc-
ing a Moment-Based Premium Principle

In this section we construct a coherent risk measure, based on a concave distor-
tion function and depending on a risk X, such that the premium principle of
this risk measure reduces to the expected value, the standard deviation or the
variance premium principle for risk X. Let an integrable, nonnegative random
variable X on some probability space (Ω, F ,P) be given. We make the following
assumptions on the risk X:

Assumption 1. The density fX of X is continuous with support on (0, ∞).

Assumption 2. The density fX is log-concave.

Assumption 3. For the density it holds: lim
x→∞

fX (x−γ)
fX (x) < ∞ for all γ > 0.

Those assumptions are made to keep the notation simple and could be relaxed.
For example the densities of the normal distribution and the gamma, the beta

1For example let X take the values 10 or 90, each with the same probability. Clearly, X
is less risky than the constant Z = 100. Let γ = 1. The standard deviation premium of X is
about 106 but the premium of Z is smaller, it is equal to 100.
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and the Weibull distribution, respectively with shape parameter α ≥ 1, are log-
concave, see Bagnoli and Bergstrom (2005). Assumption 3 is used to show that
a coherent risk measure induced by the distribution function of X is well defined
on the whole space of integrable random variables L1. In particular the gamma
and the Weibull distributions satisfy assumptions 1 − 3, both distributions are
frequently used in insurance science to model insurance risks.

Proposition 5.1. Let X satisfy Assumptions 1 − 3. Let ξ > 0. Let

G(x) := 1 − FX(−xξ), x ∈ R.

The set of functions

(7) Ψγ
X(u) = G(G−1(u) + γ), γ ≥ 0, u ∈ (0, 1),

define a FCDF and it holds

(8) ρΨγ
X

(X) = E[X] + γξ, γ ≥ 0,

where ρΨγ
X

is a coherent risk measure with domain L1 induced by the concave
distortion Ψγ

X , see Equation (2).

Remark 5.2. If ξ ∈
{

E[X],
√

Var(X), Var(X)
}

, the value ρΨγ
X

(X) is then equal
to the expected value premium, the standard deviation premium principle or
the variance premium of X.

Proof. For γ ≥ 0, we define Ψγ
X pointwise: Ψγ

X(0) := 0, Ψγ
X(1) := 1. Let

u ∈ (0, 1) and let x > 0 such that

u = H(x) := 1 − FX(x).

H is the decumulative distribution function of X. By Assumption 1, FX is a
bijective function from (0, ∞) to (0, 1). It holds x = H−1(u) and we define

Ψγ
X(u) := H(H−1(u) − γξ).

It follows

(9) Ψγ
X(H(x)) = H(x − γξ), x > 0, γ ≥ 0.

It is straightforward to see that γ 7→ Ψγ
X(u) is continuous and increasing and

that u 7→ Ψγ
X(u) is increasing and concave, because the density corresponding

to FX is log-concave. Hence the family (Ψγ
X)γ≥0 is a FCDF. It additionally

satisfies conditions [E], [W] and [T], hence by Theorem 4.1, there exist a unique
distribution function Ĝ such that Ĝ(0) = 1

2 and

Ψγ
X(u) = Ĝ(Ĝ−1(u) + γ).
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By Equation (5), Ĝ can be identified by

Ĝ(x) = 1 − FX

(
F −1

X

(
1
2

)
− xξ

)
, x ∈ R, ξ>0.

We shift Ĝ and define
G(x) = 1 − FX(−xξ)

and we have

(10) Ψγ
X(u) = G(G−1(u) + γ).

Let g(x) := ξfX(−xξ). It follows for γ > 0 by Assumption 3:

lim
u↘0

∂

∂u
Ψγ

X(u) = lim
u↘0

g
(
G−1(u) + γ

)

g (G−1(u))

= lim
x→∞

fX(x − ξγ)
fX(x) < ∞.

Hence because Ψγ
X is concave for all γ ≥ 0, its partial derivative is bounded on

the unit interval and the coherent risk measures induced by the family (Ψγ
X)

are well defined on L1, see Remark 2.2. It follows by Equation (9) for all γ ≥ 0

E[X] + γξ =
∞̂

0

1 − FX(x − γξ)dx

=
∞̂

0

Ψγ
X(1 − FX(x))dx

= ρΨγ
X

(X).

Example 5.3. Let X ∼ Γ(α, β) be a gamma distributed random variable with
mean α

β and variance α
β2 modelling a risk or an aggregated risk insured by

the insurance company. The gamma distribution satisfies Assumption 1 − 3, if
α ≥ 1. We apply the standard deviation premium principle and choose

ξ =
√

Var(X) =
√

α

β
.

Additionally, assume that the insurance faces another risk Z and wishes to
compare both risks using a coherent risk measure, which reproduces the stan-
dard deviation premium for X and is induced by the FCDF (Ψγ

X), defined via
Equation (7). Table 1 compares the standard deviation premium of X, to the
premium of various other risks computed using ρΨγ

X
. The premium of a non-

negative risk Z ∈ L1 under ρΨγ
X

is equal to

(11) ρΨγ
X

(Z) =
∞̂

0

Ψγ
X(1 − FZ(s))ds.

12



The integral appearing in Equation (11) can be computed using standard nu-
meric methods.

We compare risk X to an exponential, a Gaussian, a Bernoulli and a Pareto
risk.

If Z ∼ Pareto(xm, a) is Pareto distributed with scale xm > 0 and shape
a > 0 and if a ∈ (1, 2], then Z has finite first and infinite second moments. In
particular, the standard deviation premium principle cannot be applied to Z.
The expected value of Z is axm

1−a for a > 1. We further compare risk X to a
risk W defined by the loss occurring in a layer with deductible D ≥ 0 and cover
C > D of a Pareto distributed loss Z, i.e.

W := (Z − D)+ − (Z − C − D)+.

Let the distribution of W be denoted by

F α,xm,D,C
W (x) :=

{
1 −

(
xm

x+D

)α

, (xm − D, 0)+ ≤ x < C

1 , x ≥ C.

It turns out that for γ = 1, the Standard Deviation Premia of the exponential
and the Gaussian risk are very similar to the corresponding premia computed
using ρΨ1

X
. The differences between both premia for Bernoulli or Pareto risks

are very large.

X Zexp ZGauss ZB Z∞ Z250 Z10

Expected Value 1 1 1 1 1 1 1
SD premium 1.47 2 1.20 10.95 ∞ 8.1 2.92

Premium under ρΨ1
X

1.47 1.99 1.19 4.25 4.31 3.46 2.64

Table 1: Compare the standard deviation (SD) premium principle to the
premium principle using the coherent risk measure ρΨ1

X
applied to various

risks: X ∼ Γ
( 9

2 , 9
2
)
, Zexp ∼ exp(1), ZGauss ∼ N(1, 2

10 ), ZB is Bernoulli dis-
tributed taking the value 100 with probability 1

100 . Z∞ ∼ Pareto( 1
10 , 10

9 ),
Z250 ∼ F

10
9 ,0.2,0.2,250

W and Z10 ∼ F
10
9 ,0.36,0.36,10

W . The concave distortion function
Ψ1

X is drawn in Figure 1 as Ψ4.

5.2 Interpretation of the Coherent Risk Measure ρΨγ
X

Recently Cherny and Madan (2009) provided an axiomatic approach to study
performance measures in a unified way. They defined an acceptability index α :
L∞ → [0, ∞] as a monotone, quasi-concave, scale-invariant and semi-continuous
map assigning to a terminal cash flow a positive value. The higher that value,
the more attractive is the position. A famous example is the gain-loss ratio, see
Bernardo and Ledoit (2000).

As above let X describe some insurance risk and let πX be the premium of X
obtained by a moment based premium principle. Let the FCDF (Ψγ

X) be defined

13



such that πX = ρΨγ
X

(X). The following proposition offers an interpretation of
the premium principle based on the coherent risk measure ρΨγ

X
. There is an

acceptability index α such that the performance of the future random cash flow

ρΨγ
X

(Z) − Z

for any risk Z ∈ L1 is at least as high as the performance of the cash flow
πX − X. Using only the acceptability index α as a criterion, the insurance is
indifferent insuring risk X and obtaining premium πX or insuring another risk
Z in return for premium ρΨγ

X
(Z).

Proposition 5.4. Let X satisfy Assumptions 1 − 3. For some ξ > 0, let the
FCDF (Ψγ

X)γ≥0 be defined as in Equation (7). Let γ0 ≥ 0 and

πX := E[X] + γ0ξ.

There exist an acceptability index α : L1 → [0, ∞] such that

(12) α (πX − X) = γ0 ≤ α
(

ρΨγ0
X

(Z) − Z
)

,

for all Z ∈ L1 with Z ≥ 0.

By convention, the performance of the null-position is infinite. Therefore the
right-hand side of Equation (12) can be equal to infinity, for example if Z = 0.

Proof. The family of coherent risk measures
(

ρΨγ
X

)
γ≥0

has domain L1 and
defines an acceptability index α by

α : L1 → [0, ∞]

Y 7→ sup
{

γ ≥ 0 : ρΨγ
X

(−Y ) ≤ 0
}

,

see Cherny and Madan (2009, eq. (4)) and Remark 2.3. Let Z ∈ L1 such that
Z ≥ 0. It holds using the translation property for coherent risk measures

α
(

ρΨγ0
X

(Z) − Z
)

= sup
{

γ ≥ 0 : ρΨγ
X

(
−

(
ρΨγ0

X
(Z) − Z

))
≤ 0

}

= sup
{

γ ≥ 0 : ρΨγ
X

(Z) ≤ ρΨγ0
X

(Z)
}

≥ γ0

and similarly

α (πX − X) = sup
{

γ ≥ 0 : ρΨγ
X

(X) ≤ E[X] + γ0ξ
}

= γ0.
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6 Conclusion
In this article we pointed out the relation between a family of concave distortion
function (FCDF) and coherent risk measures. A concave distortion function
is a concave function mapping the unity interval onto itself. A coherent risk
measures can be defined by distorting the original distribution function of a
random variable: losses are given more weight and gains are given less weight.
We have shown that a FCDF satisfying a certain translation equation, can be
represented by a distribution function. Our representation theorem is novel, it
generalizes a comparable result obtained by Tsukahara (2009).

In contrast to Tsukahara (2009), our representation results also covers FCDF
which are not strictly increasing in the distortion level like the FCDF related to
the expected shortfall and FCDF which jump like the “ess sup-expectation con-
vex combination” distortion function defined and applied to finance by Bannör
and Scherer (2014).

On the other hand, Tsukahara’s result does not require the family of dis-
tortion functions to be concave. But concavity is a natural requirement when
dealing with coherent risk measures. A risk measure should encourage diver-
sification, i.e. the risk of a portfolio must not exceed the sum of the risk of
its components. A risk measures induced by a distortion function which is not
concave, is in general not sub-additive and does not encourage diversification.

An application of the representation result can be found in actuarial science:
assume there is an insurance company selling mainly contracts to insure a risk
X. The risk X may describe a loss due to some natural disaster like fire.
The insurance company computes the premium of the insurance contract using
a moment based premium principle, e.g. the premium is calculated as the
expected value of X plus a multiple of the standard deviation of X. Such a
premium principle is easy to understand and to explain to policyholders but it
is not monotone, i.e. different insurance risks cannot be compared with each
other and cannot be priced in a consistent way.

Our representation theorem makes it possible to construct a coherent risk
measure ρX , induced by a concave distortion function and depending on the
distribution function of X, such that the premium principle of that risk measure
reduces to a moment based premium principle when applied to risk X. The price
of another insurance risk Z may then be compared to the standard deviation
premium of X, even if the variance of Z does not exist, by applying ρX both to
X and to Z.

The premium principle based on ρX is consistent with a moment based
premium principle like the standard deviation premium principle. The residual
cash flow of the insurance company insuring risk X in return for the (standard
deviation premium) is the difference of the premium and the insurance risk X.
We show that there exists an acceptability index (performance measure) such
that the performance of the residual cash flow insuring risk X is equal to the
performance of the residual cash flow insuring any other risk Z, if the premium
of Z is computed based on ρX .

Using only this acceptability index as a criterion, the insurance is indifferent
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insuring risk X and obtaining a standard deviation premium or insuring another
risk Z in return for the premium ρX(Z).

7 Appendix
The following lemma shows that a FCDF can only be represented by a distri-
bution function G with a certain structure, e.g. G is continuous on the whole
real line and strictly increasing on its support until it hits its upper limit 1.

Lemma 7.1. Let u0 ∈ (0, 1). Let G : R → [0, 1] be a distribution function such
that G(0) = u0. Define G(−∞) = 0. Let G−1 be the generalized inverse of G,
for instance

G−1(u) := inf {x ∈ R : G(x) ≥ u} .

Define x0 := inf {x ∈ R, G(x) > 0} and x1 := G−1(1). It then holds x0 < x1.
Let (Ψγ) be a FCDF. If

Ψγ(u) = G(G−1(u) + γ), u ∈ (0, 1), γ ≥ 0,

then it holds G(x0) = 0 and G is continuous on R and strictly increasing on
(x0, x1). We further have

(13) G−1(G(x)) = x, x ∈ (x0, x1)

and

(14) G(G−1(u)) = u, u ∈ (0, 1).

Proof. We trivially have x0 ≤ 0 < x1. Assume 0 < p0 := G(x0). Then p0 ≤
u0 < 1 and G−1(p) = x0 for p ∈ (0, p0]. Hence the map u 7→ G(G−1(u)) is
constant and equal to p0 on (0, p0), which is a contraction as the map u 7→ Ψ0(u)
is concave and increasing and Ψ0(1) = 1. Thus it holds G(x0) = 0.

As G is a distribution function, G is right-continuous and increasing, i.e. for
all x ∈ R it holds

G(x+) := lim
ε↓0

G(x + ε) = G(x).

Assume there is a x̄ ∈ (x0, x1] such that

ū := G(x̄−) := lim
ε↑0

G(x̄ + ε) < G(x̄)

i.e. G jumps at x̄. Then G(G−1(ū−)) < G(x̄) ≤ G(G−1(ū+)), which is a
contradiction because the map u 7→ Ψ0(u) is continuous on (0, 1]. We conclude
that G is continuous on R.

Now we show, that G is strictly increasing on (x0, x1). Assume there are
x0 < x̃1, x̃2 < x1 such that x̃1 < x̃2 and G(x̃1) = G(x̃2) =: ũ. Then it follows
0 < ũ < 1 and there exists γ > 0 such that

G(G−1(ũ−) + γ) ≤ G(x̃1 + γ) < G(x̃2 + γ) ≤ G(G−1(ũ+) + γ),
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which is again a contraction. The second assertion, expressed by Equations
(13) and (14), follows immediately, because G̃ : (x0, x1) → (0, 1), x 7→ G(x), is
bijective.

Prove of Theorem 4.1. We show the direction i)⇒ ii). Let u0 ∈ (0, 1)
and define G : R → [0, 1] by Equation (5).

First step: Show that p 7→ Ψγ(p) is continuous.
By Definition 3.1, for a fixed γ ≥ 0, the function u 7→ Ψγ(u) is monotonically

increasing and concave and it holds Ψγ(0) = 0 and Ψγ(1) = 1. This implies a
strong structure on Ψγ : There exists a constant ũγ ∈ [0, 1], namely

(15) ũγ = inf {u : Ψγ(u) = 1} ,

such that u 7→ Ψγ(u) is strictly increasing and continuous on (0, ũγ ] and constant
on (ũγ , 1]. At zero, u 7→ Ψγ(u) might jump. Let p̃γ := lim

ε↓0
Ψγ(ε) be the jump-

size at u = 0. For a particular distortion function, ũγ and p̃γ are visualized in
Figure 1. By definition of p 7→ Ψγ(p), it holds for 0 ≤ p ≤ p̃γ

Ψγ(p) = inf {u ∈ [0, 1] : Ψγ(u) ≥ p} = inf {u ∈ (0, 1]} = 0.(16)

Continuity of p 7→ Ψγ(p) follows immediately: define

Θγ(u) :=
{

p̃γ , u = 0
Ψγ(u) , u > 0.

Then u 7→ Θγ(u) is continuous and bijective as a function from [0, ũγ ] to [p̃γ , 1]
and hence its inverse Θγ is also continuous. We further have Ψγ(p) = Θγ(p) for
p ∈ [p̃γ , 1], which shows continuity of p 7→ Ψγ(p).

Second step: show that γ 7→ Ψγ(u0) is decreasing and continuous, hence G
is a distribution function.

While γ 7→ Ψγ(u0) is increasing and continuous in the variable γ by defini-
tion, it is easy to see that its generalized inverse is decreasing in the variable
γ. The function γ 7→ Ψγ(u0) is continuous, which can be seen by the following
auxiliary result:

If γ2 ≥ γ1 ≥ 0 and Ψγ2−γ1(u0) < 1 and u0 > p̃γ1 , it follows

Ψγ2−γ1(u0) = Ψγ2−γ1
(

Ψγ1
(

Ψγ1 (u0)
))

= Ψγ2
(

Ψγ1 (u0)
)

.

Applying Ψγ2 on both sides, yields

(17) Ψγ1(u0) = Ψγ2 (
Ψγ2−γ1(u0)

)
.

Let γ0 := inf {γ ≥ 0 : p̃γ ≥ u0}, where inf ∅ = ∞. γ0 is the smallest number,
such that the jump-size of Ψγ0 at zero is greater or equal to u0. The map
γ 7→ Ψγ(u0) is identical to zero on [γ0, ∞), compare with Equation (16). It
remains to show continuity from below at γ ∈ (0, γ0] and continuity from above
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at γ ∈ (0, γ0). Let 0 < γ ≤ γ0 and (γn)n∈N be a positive sequence converging
from below to γ. Without loss of generality, we assume γn < γ for all n. For
n large enough, it holds Ψγ−γn(u0) < 1 because Ψγ is continuous at γ and
Ψ0(u0) = u0 < 1. We have u0 > p̃γn

because γn < γ0 and by Equation (17), it
holds

Ψγn(u0) = Ψγ (
Ψγ−γn(u0)

)
→ Ψγ(u0), n → ∞,

where we used that p 7→ Ψγ (p) is continuous on [0, 1]. If γ < γ0 and (γn)
is a sequence converging from above to γ, let ε > 0 such that Ψεγ(u0) < 1
and choose n large enough so that (1 + ε)γ − γn ≥ 0 and γn < γ0. It follows
Ψ(1+ε)γ−γn(u0) < 1 and using Equation (17) twice and continuity of p 7→ Ψγ (p),
shows continuity from above.

Thus G is monotonically increasing and continuous. Continuity at zero can
be shown using condition [E]: it holds G(0) = Ψ0 (u0) = u0. By condition [W] it
follows lim

x→∞
G(x) = 1 and lim

x→−∞
G(x) = 0. G is thereby a distribution function.

Third step: show that Equation (4) holds.
We distinguish three cases and use that (Ψγ)γ≥0 satisfies condition [T]. Let

γ ≥ 0 and u ∈ (0, 1). As G is continuous, it is a surjective function from R to
(0, 1) and there exists x ∈ R such that G(x) = u and G−1(u) = x. If x ≥ 0, it
follows

G(x + γ) = Ψx+γ (u0)
= Ψγ (Ψx (u0))
= Ψγ(G(x)).

If x < 0, it holds Ψ−x(u0) = G(x) > 0 and therefore u0 > p̃−x. If x < 0 and
x + γ ≥ 0, it follows

G(x + γ) = Ψx+γ (u0)

= Ψx+γ
(

Ψ−x
(

Ψ−x (u0)
))

= Ψγ(G(x)).

If x < 0 and x + γ < 0 we have

1 > u0 = Ψ−x
(

Ψ−x(u0)
)

= Ψ−γ−x
(

Ψγ
(

Ψ−x (u0)
))

and thereby Ψγ
(

Ψ−x (u0)
)

< ũ−γ−x, compare with Equation (15). We further

have Ψγ
(

Ψ−x (u0)
)

> 0 as Ψ−x (u0) = G(x) = u > 0. Because Ψ−γ−x :
(0, ũγ ] → (p̃γ , 1] is bijective, it follows

G(x + γ) = Ψ−x−γ (u0)

= Ψ−x−γ
(

Ψ−γ−x
(

Ψγ
(

Ψ−x (u0)
)))

= Ψγ(G(x)).
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Fourth step: Show the uniqueness of G.
Let assume there is another distribution function F such that F (0) = u0

and
F (F −1(u) + γ) = Ψγ(u), u ∈ (0, 1), γ ≥ 0.

For x ≥ 0 it follows by Lemma 7.1,

F (x) = F (F −1(u0) + x) = Ψx(u0) = G(x).

Let x0 := inf {x, F (x) > 0}. For x0 < x < 0, it follows 0 < F (x) < 1 and it
holds

Ψ−x (F (x)) = F (F −1(F (x)) − x) = F (0) = u0

and hence
F (x) = Ψ−x(u0) = G(x).

If −∞ < x0, we further have

p̃−x0 = lim
ε↓0

F (F −1(ε) − x0) = F (0) = u0

and therefore G(x0) = Ψ−x0(u0) = 0 = F (x0). Hence it holds G(x) = F (x) for
all x ∈ R.

Now let us show the other direction ii)⇒ i). We use lemma 7.1. Let u0 ∈
(0, 1). If there is a distribution function G such that G(0) = u0 and Equation
(4) holds, it follows for any u ∈ (0, 1]

lim
γ→∞

Ψγ(u) = lim
γ→∞

G(G−1(u) + γ) = 1,

i.e. (Ψγ) satisfies condition [W]. We further have

Ψ0(u) = G(G−1(u)) = u, u ∈ (0, 1),

which shows that the FCDF satisfies condition [E]. Now let γ1, γ2 ≥ 0 and
u ∈ (0, 1). Assume Ψγ1(u) < 1, then it holds

Ψγ2 (Ψγ1 (u)) = G(G−1 [
G(G−1(u) + γ1)

]
+ γ2)

= G(G−1(u) + γ1 + γ2)
= Ψγ1+γ2 (u) .

The case Ψγ1(u) = 1 is trivial. Thus (Ψγ) satisfies condition [T].
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