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Abstract
The theory of conic finance replaces the classical one-price model by

a two-price model by determining bid and ask prices for future terminal
cash flows in a consistent manner. In this framework, we derive closed-
form solutions for bid and ask prices of plain vanilla European options,
when the density of the log-returns is log-concave.

Assuming that log-returns are normally or Laplace distributed, we
apply the results to a time-series of real market data and compute an
implied liquidity risk premium to describe the bid-ask spread. We compare
this approach to the classical attempt of describing the spread by quoting
Black-Scholes implied bid and ask volatilities and demonstrate that the
new approach characterize liquidity over time significantly better.

Keywords: Conic finance, distortion functions, WANG-transform,
Laplace distortion

1 Introduction
The risk taken by an investor by holding an asset with an uncertain future cash
flow can be described by coherent risk measures, which have been introduced
axiomatically by Artzner et al. (1999). A coherent risk measure maps the
set of bounded random variables to the real numbers fulfilling four axioms:
cash invariance, monotonicity, sub-additivity, and positive homogeneity. An
important subclass of risk measures is described by distortion functions, which
are concave functions mapping the unit interval into the unit interval and have
been studied in a general context by Kusuoka (2001). For example the expected
shortfall can be represented by distortion functions. Under a distortion function,
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the risk of a random cash flow X is calculated as its distorted expectation by
reweighting the distribution function of X: the probability of losses gets higher
weight while the probability of gains is lower weighted.

Distortion functions play an important role in finance: beside their appli-
cations in risk-measurement, they have also been used by Cherny and Madan
(2009) in order to define a new class of performance measures, the so called
acceptability indices. An acceptability index represents the attractiveness of a
cash flow, a famous example being the gain-loss ratio, see Bernardo and Ledoit
(2000). There is a strong duality between an acceptability index and risk mea-
sures: any unbounded acceptability index can be represented by a family of risk
measures. Madan and Cherny (2010) applied the theory of performance mea-
sures and developed the theory of conic finance which allows prices to depend
on the direction of the trade: there are two prices: an ask price for buying an
asset from the market and a usually smaller bid price for selling the asset to the
market. They defined the bid price of a cash flow X by its discounted distorted
expectation and the ask price by minus the discounted distorted expectation
of the cash flow −X. Cherny and Madan considered four families of concave
distortion functions: MINVAR, MAXVAR, MINMAXVAR and MAXMINVAR,
which all depend on some parameter γ ≥ 0 describing the liquidity of the mar-
ket. The greater γ, the greater the bid-ask spread and the less liquid the market.
Given real market data, it is possible to compute an implied γ matching the bid
and ask prices exactly. Such a γ is called implied liquidity risk premium.

Another popular example of a concave distortion function used in actuarial
science, the so called Wang-transform, was proposed by Wang (2000). It involves
the standard cumulative normal distribution Φ and its inverse. For some level
γ ≥ 0, Wang defined a distortion function by

(1) Ψγ
WANG(u) = Φ(Φ−1(u) + γ), u ∈ [0, 1], γ ≥ 0.

The WANG-transform is a family of distortion functions on the index set γ ≥ 0.
For γ = 0, the WANG-transform is the identity function, there is in fact no
distortion and the distorted expectation is equal to the usual expectation. For
an increasing γ, the distortion is more and more severe and in the limit for
γ → ∞, the distorted expectation corresponds to the worst case risk measure
and is equal to the maximum possible loss of the cash flow.

The WANG-transform has been modified by Wang (2002) to a two fac-
tor model replacing the normal distribution in Equation (1) by Student’s t-
distribution but leaving the inverse normal distribution inside the brackets un-
touched. Kijima and Muromachi (2006) introduced a new transform involving
a non-central t-distribution and the inverse of a standard t-distribution. The
classical WANG-transform has been extended to the multidimensional case by
Kijima (2006). Kijima and Muromachi (2008) generalized the WANG-transform
and constructed a transformation using the normal distribution and the inverse
of the cumulative distribution function of the quotient of a normally distributed
random variable and some independent positive random variable Y . For Y = 1
the classical WANG-transform is obtained. Tsukahara (2009) generalized the
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WANG-transform by replacing the normal distribution function Φ in Equation
(1) by a general distribution function F and its inverse by F −1. Tsukahara called
such a distribution function a one-parameter distortion group and showed the
distortion function is concave, if F is log concave. We say such a distortion
function is induced by the distribution function F .

In this article, we apply the results of Tsukahara (2009) to conic finance:
Let us assume that the log-returns of some random cash flow have distribution
F and that F is log concave. If we use the family of distortion functions that
is induced by F , we are able to derive explicit formulas for the bid and ask
prices of the cash flow. In particular the bid and ask prices of European vanilla
options are equal to the risk-neutral price of an option on the underlying with
an adjusted dividend yield. It is then possible to derive closed-form solutions
provided that the log-returns are normally or Laplace distributed.

This article is structured as follows: In Section 2 we introduce distortion
functions and recall an important connection to distribution functions. The
result is applied to conic finance in Section 3 to derive close-form solutions for
bid and ask prices of European options. Two important examples, the Black-
Scholes and the Laplace-model are discussed. In Section 3.4 the concept of the
implied liquidity risk premium is defined and applied to real data in Section 3.5.
Given bid and ask market prices, an implied liquidity risk premium γ ≥ 0 can
be computed such that model bid and ask prices are equal to market prices,
compare with Corcuera et al. (2012). We do this for both the Black-Scholes
and the Laplace-model and compare the new approach to the commonly used
approach by practitioners of quoting implied bid and ask volatilities to describe
the bid-ask spread.

2 Some Results on Distortion Functions
Madan and Cherny (2010) defined bid and ask prices via distorted expectations
that are based on distortion functions. Let us recall the definition of distortion
functions. A comprehensive introduction of risk measures based on concave
distortion functions can be found e.g. in Föllmer and Schied (2011, Section
4.6).

Definition 2.1. (Family of distortion functions). A family of distortion func-
tions (Ψγ)γ≥0 is a set of functions Ψγ : [0, 1] → [0, 1] that are monotonically
increasing, continuous and concave for all γ ≥ 0 and for which Ψγ(0) = 0 and
Ψγ(1) = 1. Moreover the family is monotonically increasing and continuous at
γ, i.e. it holds that for all u ∈ [0, 1]: Ψγ1(u) ≤ Ψγ2(u) for γ1 ≤ γ2.

In what follows, we will assume that Ψ0(u) = u, u ∈ [0, 1]. Let F be a
distribution function with density f . We say a family of distortion functions
(Ψγ), satisfying the requirements of Definition 2.1, is induced by F , if it holds

(2) Ψγ(u) = F
(
F −1(u) + γ

)
, u ∈ [0, 1], γ ≥ 0,
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where F −1 is understood to be the generalized inverse of F and we define
F (−∞) = 0 and F (∞) = 1.
Remark 2.2. The function Ψγ defined by Equation (2) is continuous in u if F
and F −1 are continuous. Tsukahara (2009) showed that Ψγ is concave, if F ′′

/F ′

is decreasing: such densities are called log-concave densities. There exists a con-
cave function φ such that f(x) = exp(φ(x)). The log-concave densities used in
this article to describe log-returns are the normal and the Laplace distribution.

The most prominent example of a family of distortion functions induced by a
distribution function, is the WANG-transform, which is induced by the normal
distribution, compare with Equation (1). We provide another example:

Example 2.3. A random variable with mean zero and variance one which is
Laplace distributed, has the following distribution function

F (x) =
{

1
2 e

√
2x , x < 0

1 − 1
2 e−

√
2x , x ≥ 0.

It induces via Equation (2) the Laplace distortion

Ψγ
Laplace(u) =





ue
√

2γ , u ∈
[
0, 1/2e−

√
2γ

)

1 − e−
√

2γ

4u , u ∈
[

1/2e−
√

2γ , 1/2
)

ue−
√

2γ + 1 − e−
√

2γ , u ∈ [1/2, 1] ,

which is linear for u < 1/2e−
√

2γ and for u ≥ 1/2. In between it behaves like a
reciprocal function and it is clearly concave. Applying the Laplace distortion to a
uniform distribution function, which appears e.g. via a Monte Carlo simulation,
leads to a new interesting interpretation of the parameter γ. In Figure 1 the
density of a Laplace distorted uniform distribution is drawn. It is high and
constant at the beginning, then it drops sharply and is quite low and constant
at the right hand side of the median. So if we only wish to distort the q−quantile
of a uniform distribution strongly, we can simply choose γ = − 1√

2 log(2q). On
the other hand, if real data is given and we calculate implicitly the parameter
γ, the value 1

2 e−
√

2γ can be interpreted as the quantile that is the most strongly
distorted.

In general, it is desirable that

(3) lim
u↘0

Ψ
′
γ(u) = ∞, γ > 0

and

(4) lim
u↗1

Ψ
′
γ(u) = 0, γ > 0,

where we assumed that the distortion function is differentiable and we where we
defined Ψ′

γ(u) = ∂
∂u Ψγ(u), compare with Cherny and Madan (2009) and Balbás

4



−1.0 −0.5 0.0 0.5 1.0

0
.5

1
.0

1
.5

2
.0

Density of Laplace Distorted Uniform Distribution

x

uniform density
distorted uniform density

Figure 1: Density of Laplace distorted uniform distribution on [−1, 1] at distor-
tion level γ = 1.

et al. (2009). High losses happen somewhere on the left of a distribution
function: for x → −∞ it holds FX(x) ↘ 0. Hence, Equation (3) ensures loss
aversion. On the other hand, big gains happen somewhere on the right: for
x → ∞ it follows FX(x) ↗ 1, thus Equation (4) ensures against being enticed
by large gains.

It is well known that the WANG transform satisfies Equations (3) and (4),
see for example Madan and Schoutens (2016). Example 2.3 shows that the
Laplace distortion does not satisfy Equation (3) neither (4).

3 Applications to Conic Finance
The aim of this section is to derive analytic formulas for bid and ask prices
of European options. We will see that under certain conditions, the bid (ask)
price of a call option on a stock with dividend yield q can be calculated as
the risk-neutral price of an option with the same strike and maturity but an
increased (decreased) dividend yield q̃. The key idea is to use a family of distor-
tion functions which is induced by the distribution function of the log-returns.
Then the computation of the distorted integrals is straightforward and leads to
analytic formulas for bid and ask prices in case of the normal and the Laplace
distribution.
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3.1 Stock model
Inspired by Corcuera et al. (2009), let us model a stock at some terminal date
T by a random variable ST , which is defined in the following way: let Z be
a random variable with mean zero and variance equal to 1. Its distribution
function is denoted by FZ , its density by fZ . The random variable

√
TZ has

then variance T and the underlying ST at time T is defined by

(5) ST = S0e(r−q+ω)T +σ
√

T Z

where σ > 0, r is the risk-free rate, q the dividend yield and ω ∈ R is a mean
correcting term, i.e. ω is chosen such that

(6) e−(r−q)T E (ST ) = S0,

where the expectation is taken under a risk-neutral measure Q. In the following,
we assume that FZ is symmetric about zero, i.e. FZ(−x) = 1 − FZ(x) for all
x ∈ R.

3.2 Conic Bid and Ask prices
We then introduce a terminal cash flow X, for example a call option on ST , and
denote by FX the distribution function of X with respect to the measure Q.
By Madan and Cherny (2010), the bid and ask prices of the random cash-flow
X, without hedging opportunities, are defined as distorted expectations, with
respect to some γ ≥ 0. For the bid price, we have that

bidγ(X) = e−rT

∫ ∞

−∞
xdΨγ (FX(x))(7)

= e−rT

∫ ∞

−∞
xΨ

′
γ (FX(x)) fX(x)dx,(8)

where (Ψγ)γ≥0 is a family of distortion functions. For the second equation, we
assume that the distribution function FX of X is differentiable with density fX .
Similarly, the ask price is defined by

(9) askγ(X) = −e−rT

∫ ∞

−∞
xdΨγ (F−X(x)) .

If γ = 0, the bid and ask prices coincide and are equal to the risk-neutral price of
the cash flow X, which is the discounted expectation of X under the risk-neutral
measure Q.

3.3 Bid and Ask prices of European Options
We now introduce a call option with strike K and maturity T on the underlying
ST . It is easy to see that the distribution of the call option C = (ST − K)+ is

FC(x) = FST
(x + K), x ≥ 0

= FZ

(
log (x + K) − log (S0) − (r − q + ω)T

σ
√

T

)
, x ≥ 0.
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Let us assume that FZ induces a family of distortion functions by

Ψγ
Z(u) = FZ

(
F −1

Z (u) + γ
)

, γ ≥ 0,

compare with Remark 2.2. In particular, we assume that fZ belongs to the
family of log-concave densities. This will lead to particularly simple formulas
for the bid and ask prices because the distorted distribution function can then
explicitly be calculated via Equations (7) and (9), e.g. for a call option, it holds

Ψγ
Z (FC(x)) = FZ

(
log (x + K) − log (S0) − (r − q + ω)T

σ
√

T
+ γ

)
, x ≥ 0.

We calculate the bid price of a call option by

bidγ (C) = e−rT

∫ ∞

−∞
xdΨγ

Z (FC(x))

= e−rT

∫ ∞

0
x

fZ

(
log(x+K)−log(S0)−(r−q+ω)T

σ
√

T
+ γ

)

σ
√

T (x + K)
dx

= e−rT

∫ ∞

−d+γ

(
S0eσ

√
T y+(r−q+ω)T −σ

√
T γ − K

)
fZ (y) dy,(10)

where

(11) d =
log

(
S0
K

)
+ (r − q + ω)T
σ

√
T

.

From Equation (10) we see that the bid price of an option C on a stock with
dividend yield q at level γ ≥ 0 equals the risk neutral price of an option on a
stock with a different dividend yield q̃ = q + γσ√

T
.

Similarly, the ask price can be obtained by evaluating F−C , it holds

askγ(C) = e−rT

∫ ∞

−d−γ

(
S0eσ

√
T y+(r−q+ω)T +σ

√
T γ − K

)
fZ (y) dy(12)

= bid−γ(C).

Hence, if we have an analytic formula for the bid price, we just need to substitute
γ by −γ to get an analytic formula for the ask price.

Analogically, it holds for the bid price of an European Put option P =
(K − ST )+

(13) bidγ(P ) = e−rT

∫ ∞

d+γ

(
K − S0e−σ

√
T y+(r−q+ω)T +σ

√
T γ

)
fZ (y) dy

and the ask price of a put option can be expressed by

askγ(P ) = e−rT

∫ ∞

d−γ

(
K − S0e−σ

√
T y+(r−q+ω)T −σ

√
T γ

)
fZ (y) dy(14)

= bid−γ(P ).

7



Summarizing, the bid price of a call option and the ask price of a put op-
tion are equal to the risk-neutral prices of a call and a put option respectively,
replacing the dividend yield q of the stock by q + σγ√

T
. The ask price of a call

option and the bid price of a put option are equal to risk-neutral price of a call
and a put option respectively, replacing the dividend yield by q − σγ√

T
.

We will provide two examples where Equation (10) can be calculated explic-
itly.

Example 3.1. As already mentioned by Madan and Schoutens (2016, Example
5.5), assuming a Black-Scholes setting, i.e. Z is standard normally distributed
with distribution function Φ and ω = − 1

2 σ2 and using the WANG-transform,
leads to the following formulas for the bid price of a call option and a put option

bidWANG(C) = S0e
−

(
q+ γσ√

T

)
T Φ (d1 − γ) − e−rT KΦ (d2 − γ)(15)

bidWANG(P ) = e−rT KΦ (−d2 − γ) − S0e
−

(
q− γσ√

T

)
T Φ (−d1 − γ) ,(16)

where
d1 =

log (S0/K) +
(
r − q + σ2

/2
)

T

σ
√

T

and d2 = d1 −σ
√

T are defined as in the classical Black-Scholes model. The ask
prices are equal to the bid prices, replacing γ by −γ. For γ = 0, we obtain the
classical Black-Scholes formula.

The Laplace distribution is particularly interesting because mathematically
it is even easier to handle than the normal distribution and it has fatter tails.
While the logarithm of the density of the normal distribution decays quadrat-
ically, the logarithm of the Laplace density decreases linearly. Thus using the
Laplace distribution instead of the normal distribution can overcome some of
the criticism of the Black-Scholes model.

Example 3.2. Let T > 0 and let Z be Laplace distributed with mean zero and
variance 1. In particular, Z has density

fZ(x) = 1√
2

e−
√

2|x|.

Let us use the Laplace distortion as defined in Example 2.3 and assume σ2T < 2
and let ω = 1

T log
(
1 − 1

2 σ2T
)
, which makes the underlying in Equation (5) risk

neutral. See also Madan (2016) for the use of the Laplace distribution in pricing
European options. Note that the integral in Equation (10) is infinite if σ2T ≥ 2,
independently of the choice of ω. We should not worry to much about this: from
a practical point of view, the maturity T and volatility σ usually do not exceed
the limit, i.e. σ2T < 2. E.g. if we look at a time-horizon of less then eight
years and a yearly volatility of 50% or less, we are well below the limit. From a
mathematical point of view, we know by Equation (6) that the expectation of
ST under the risk neutral measure must be finite, in particular it holds

E (ST ) < ∞.
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Figure 2: S&P 500 and VIX between August, 5th and September, 2nd 2015.

This is equivalent to E
(

eσ
√

T Z
)

< ∞. On the other hand it holds

E
(

eσ
√

T Z
)

=
∫

R
eσx 1√

2T
e

−
√

2√
T

|x|
dx =

{
∞ , σ

√
T ≥

√
2

2
2−σ2T , σ

√
T <

√
2.

Therefore σ2T < 2 must hold but as 2
2−σ2T → ∞ for σ2T ↗ 2, the integral may

be arbitrary large. Closed-form solutions for bid and ask prices of European
options can be obtained by taking the corresponding closed-form solutions in
Madan (2016, Section 2.1) and replacing q by q + γσ√

T
, respectively by q − γσ√

T
.

3.4 Implied Liquidity Risk Premium (ILRP)
The concept of implied liquidity has been introduced by Corcuera et al. (2012),
Dhaene et al. (2012) and Albrecher et al. (2013). It is similar to the idea of
implied volatility and computes implicitly two parameters γb and γa such that
modelled bid and ask prices match real market prices.

Given some real market data of bid and ask prices of a cash-flow X, we as-
sume that the risk-neutral measure Q is chosen, such that the mid price is equal
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Figure 3: Average implied volatility and liquidity over time of ATM-Call op-
tions with maturity varying between 0.42 and 0.55 years and moneyness ranging
between 0.98 and 1.02.

to the discounted expectation of X under Q. For example if X is an European
option, and the underlying is described by the Black-Scholes model, one would
compute an implied volatility such that the Black-Scholes price matches the
given mid price of the option. Thus we assume the distribution FX is known
and call a non-negative number γb such that bidγb(X), defined in Equation (7),
exactly matches the given market bid-price as the implied liquidity risk premium
at the bid-side. We similarly define γa ≥ 0 such that askγa(X) is equal to the
given ask price as the implied liquidity risk premium at the ask-side. The pair
(γb, γa) is simply called the implied liquidity risk premium (ILRP).

We saw in the Section 3.3, that bid and ask prices of European options on a
stock with dividend yield q at level γ ≥ 0 equal the risk neutral price of the same
option, but on a stock with an adjusted dividend yield q̃ = q ± γσ√

T
. Bid and

ask prices can thus be described by drift adjustments, hence the name liquidity
risk premium.
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3.5 Application to real Market Data
We apply both the Black-Scholes model and the Laplace-model from Example
3.1 and 3.2 to bid and ask prices of real option data and compute the ILRP.
For a time-series of 21 days, between August, 5th and September, 2nd 2015, we
look at 1820 end-of-day bid and ask prices of European plain vanilla call and
put options on the S&P 500 with maturities ranging from about 0.42 to 2.36
years and moneyness between 0.83 and 1.09. The options are obtained from the
Chicago Board Options Exchange.

As shown in Figure 2, the uncertainty of Standard & Poor’s 500 stock market
index rose sharply during that period. On August, 24th, which was termed
“Black Monday” by China’s media due to the China’s stock market crash, the
CBOE Volatility Index (VIX) reached 53.29 points during the day and closed
at 40.74 points. Only a week before, on August, 17th, the VIX closed at 13.02
points. It is well known that liquidity of stock markets usually drops, when
uncertainty rises. Indeed, while at the beginning of the time-series, the relative
bid-ask spread is less than 1% for at-the-money call options with maturity of
about half a year, it rises to more than 5.6% on August, 24th for the same type
of options. In the following, we are going to compare the relative bid-ask spread,
the ILRP and the difference between implied bid and ask volatilities.

We compute for each option at each timepoint the Black-Scholes implied
volatility σBS

Mid and Laplacian implied volatility σL
Mid matching exactly the mid-

price using the classical Black-Scholes formula and the formulas derived by
Madan (2016, Section 2.1) for the Laplace-model, i.e. the formulas in Equations
(12) and (14) setting γ = 0. We get a typical volatility smile for both models,
even though the Laplacian implied volatility surface is slightly flatter than the
Black-Scholes implied volatility surface.

For each option, at each timepoint and for both models, we use the mid-price
implied volatility as estimate of the volatility in Equation (5) and compute the
ILRP, (γb, γa) ∈ R+, such that the model bid and ask prices match exactly
the quoted market bid and ask prices, see Section 3.4. For example, the Black-
Scholes bid-price in Equation (15), is equal to the quoted market bid price of a
call option, when using the implied γb and σBS

Mid as input parameters. Note that
for most options γb and γa are almost identical, only for very deep out-of-the
money options the difference between both values is more pronounced.

In industry, traders usually prefer quoting the implied volatility instead of
the mid-price, because the implied volatility is comparable across strikes, ma-
turities and underlying assets. With the same argument, it seems more appro-
priate to quote the bid-ask spread in terms of the ILRP because spreads behave
in a non-linear way across strikes, maturities and underlyings while the ILRP
improves comparability across all three dimensions.

So far traders quote implied bid and ask volatilities and describe the bid-ask
spread implicitly by the difference of the implied bid and ask volatilities. This
procedure needs to be compared to the approach to describe the bid-ask spread
by the ILRP. Note that while for some options it is not possible to compute the
implied bid volatility, because the bid-price is below the arbitrage-free price,
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for all options there exists an implied γb matching the bid-price exactly. We
removed all options from the data-set where it is not possible to compute an
implied bid volatility.

In Figure 3, the time-series of mean values γa+γb

2 for the Black-Scholes model
and the Laplace-model are shown for at-the-money call options with maturity
of about half a year and are compared to the relative bid-ask spread and the
implied bid-ask volatilities over time. While the relative bid-ask spread rose from
timepoint 12 (August, 20th) to timepoint 14 (August 24th) from 1.2% to 5.6%,
hence by the factor 4.87, the ILRP make a similar move and rose by the factor
4.81. But the difference between bid and ask implied volatilities changed by the
factor 6.85. Hence describing the bid-ask spread by quoting implied bid and
ask volatilities, overestimates the change in liquidity by about 35%. Looking at
put options instead or analysing options with different maturities or moneyness
levels, gives a similar picture. Figure 4 illustrates the relative difference of four
liquidity measures, respectively between two successive timepoints. The relative
bid-ask spread, the Black-Scholes and the Laplacian ILRP and the difference
between bid and ask Black-Scholes implied volatilities are compared for at-the-
money and out-of-the-money call and put options with maturities of about half a
year. It is not unusual that quoting the bid-ask spread using implied volatilities
overestimates an up or down move in liquidity by 40% and more compared to
the relative bid-ask spread. Only for in-the-money options, all four liquidity
measures behave similarly.

The correlation between the relative bid-ask spread and γb or γa for the
different maturities and option types (call and put), lay between 0.91 and 0.99
for the Black-Scholes and the Laplace-model. That makes the ILRP a more
intuitive measure for liquidity than quoting the spread implicitly by stating
implied volatilities for both bid and ask prices.

4 Summary
In a static conic finance framework, bid and ask prices of a future random cash
flow are defined as distorted expectations of the cash flow using some family of
distortion functions. We have seen that bid and ask prices of European options
can be calculated as the risk neutral price of the same option but on an un-
derlying with an adjusted dividend yield by adequately choosing the family of
distortion functions. In particular, the bid price of a call option with maturity
T on a stock with dividend yield q at liquidity risk premium γ can be expressed
as the risk neutral price of a call option on the stock with the same model
parameters, e.g. the same volatility, but a greater dividend yield q + γσ√

T
. We

achieved this formula by defining the distortion function induced by the distri-
bution function of the standardised asset log-returns. The distribution function
to be used depends thus on the choice of the option pricing model. The dis-
tribution function of the log-returns must belong to the family of log-concave
densities, to guarantee that it induces a distortion function.

In Section 2 we mentioned some desirable properties that distortion functions
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Figure 4: The Figure shows for call and put options with maturities between
0.42 and 0.55 years and moneyness within the two ranges 0.9-0.95 (OTM) and
0.98-1.02 (ATM), the relative difference of four liquidity measures, respectively
between two successive timepoints. The liquidity measures are: the relative bid-
ask spread (Rel-Spread), the Black-Scholes and the Laplacian ILRP (BS and
Laplace ILRP) and the difference between bid and ask Black-Scholes implied
volatilities (Diff-Vol).
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should have, in particular the first derivative of the distortion function should
approach infinity at zero and should be equal to zero at 1. In a Black-Scholes
setting, we would use the WANG-transform which has all desirable properties.
However those properties are not satisfied by the family of distortion functions
induced by the Laplace distribution.

Given real market option data, it is possible to compute an implied liquidity
risk premium (ILRP), i.e. a tuple of two non-negative numbers (γb, γa) such that
modelled bid and ask prices are exactly equal to real bid and ask prices. This
procedure is comparable to the concept of implied volatility. It is then possible
to compare bid-ask spreads across different strikes, maturities and underlyings.

Up to now, traders usually describe bid-ask spreads by quoting both bid and
ask implied volatilities. There are several advantages using the ILRP instead:
it is not always possible to compute an implied bid volatility. The concept of
ILRP overcomes this inconsistency. When uncertainty in financial market rises
and liquidity dries up, looking only at the difference of Black-Scholes implied bid
and ask volatilities often overestimates a change in liquidity by 40% and more,
because the difference of the implied volatilities changes by a higher factor than
the relative bid-ask spread. However, the correlation between the relative bid-
ask spread and the ILRP is strong, which makes the ILRP a intuitive measure
for liquidity.
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