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Abstract
This thesis consists of three essays. In the first essay, we test the pricing perfor-
mance of several advanced financial models for exotic options empirically. We
calibrate six advanced stock price models to a time series of real market data of
European options on the DAX, a German blue chip index. Via a Monte Carlo
simulation, we price barrier down-and-out call options for all models and com-
pare the modelled prices to given real market data of the barrier options. The
Bates model reproduces barrier option prices well. The BNS model overvalues
and Lévy models with stochastic time-change and leverage undervalue the exotic
options. A heuristic analysis suggests that the different degree of fluctuation of
the random paths of the models are responsible of producing different prices for
the barrier options.

The second essay of this thesis discusses the relationship between coherent
risk measures and concave distortion functions. A family of concave distortion
functions is a set of concave and increasing functions, mapping the unity inter-
val onto itself. Distortion functions play an important role defining coherent
risk measures. We prove that any family of distortion functions which fulfils a
certain translation equation, can be represented by a distribution function. An
application can be found in actuarial science: moment based premium princi-
ples are easy to understand but in general are not monotone and cannot be used
to compare the riskiness of different insurance contracts with each other. Our
representation theorem makes it possible to compare two insurance risks with
each other consistent with a moment based premium principle by defining an
appropriate coherent risk measure.

In the last essay of this thesis, we investigate financial markets with fric-
tions, where bid and ask prices are described by sublinear pricing functionals.
Such functionals can be defined recursively using coherent risk measures. We
prove the convergence of bid and ask prices for various European and American
possible path-dependent options, in particular plain vanilla, Asian, lookback
and barrier options in a binomial model in the presence of transaction costs.
We perform several numerical experiments to confirm the theoretical findings.
We apply the results to real market data of European and American plain
vanilla options and compute an implied liquidity to describe the bid-ask spread.
This method describes liquidity over time very well, compared to the classi-
cal approach of describing the bid-ask spread by quoting bid and ask implied
volatilities.
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Resumen
Esta tesis consta de tres ensayos. En el primer ensayo, probamos empíricamente
el desempeño de los precios de varios modelos financieros avanzados para op-
ciones exóticas. Calibramos seis modelos avanzados para precios de acciones a
una serie de datos de mercado reales de opciones europeas en el DAX, el índice
de referencia de la Bolsa alemana. A través de una simulación de Monte Carlo,
calculamos precios de opciones de barrera para todos los modelos y comparamos
los precios modelados con los precios del mercado de las opciones de barrera. El
modelo Bates reproduce bien los precios de las opciones de barrera. El modelo
BNS sobrevalora y los modelos Lévy con cambio temporal estocástico y con
efecto de palanca infravaloran las opciones exóticas. Un análisis heurístico sug-
iere que el diferente grado de fluctuación de las trayectorias aleatorias de los
modelos es el responsable de producir diferentes precios para las opciones de
barrera.

En el segundo ensayo de esta tesis se examinan medidas de riesgo coherentes
y funciones de distorsión cóncavas. Una familia de funciones cóncavas de distor-
sión es un conjunto de funciones cóncavas y crecientes, con dominio y imagen
igual al intervalo de unidad. Se usan las funciones de distorsión para definir
medidas de riesgo coherentes. Demostramos que cualquier familia de funciones
de distorsión que cumpla una ecuación de traslación, puede ser representada
por una función de distribución. Una aplicación se puede encontrar en la cien-
cia actuarial: los principios de primas basados en los momentos son fáciles de
entender, pero en general no son monótonos y no se pueden utilizar para com-
parar los riesgos de diferentes contratos de seguros entre sí. Nuestro teorema de
representación permite comparar dos riesgos de seguros entre sí de acuerdo con
un principio de primas basado en un momento, definiendo adecuadamente una
medida de riesgo coherente.

En el último ensayo de esta tesis, investigamos los mercados financieros con
fricciones, donde los precios de compra y venta se describen mediante funciones
de precios sublineares. Estas funciones pueden definirse recursivamente uti-
lizando medidas de riesgo coherentes. En un modelo binomial y en la presencia
de costes de transacción, demostramos la convergencia de los precios de com-
pra y venta para varias opciones europeas y americanas, en particular opciones
plain vanillas, asiáticas, lookback y barrera. Realizamos varios experimentos
numéricos para confirmar los hallazgos teóricos. Aplicamos los resultados a los
datos de mercado reales de las opciones plain vanilla europeas y americanas
y calculamos una liquidez implícita para describir la diferencia de precios de
compra y venta. Este método describe muy bien la liquidez en comparación con
el enfoque clásico de describir la diferencia entre los precios de compra y venta
con las volatilidades implícitas de dichos precios.
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Introduction
Derivative pricing is an important branch of finance requiring advanced quanti-
tative techniques. Derivatives derive their value from a market-based reference
like a stock, an index or a foreign exchange rate. It is often criticized that
derivatives are too complex to understand1. The present thesis attempts to
bring some light into the discussion. In this thesis, several existing advanced
stock price models are presented and analysed empirically. A good model might
help to find a “fair” price for a derivative, which satisfies all contracting parties.

An investor holding an asset with an uncertain future cash flow like a deriva-
tive takes several risks. The market risk can be describe by coherent risk mea-
sures. Many coherent risk measures like the expected shortfall are represented
by concave distortion functions, which are functions mapping the unity interval
onto itself.

The financial crisis in 2008 led to fundamental questions about liquidity
risk. During a crisis the market is less willing to trade, it is less liquid, the
bid-ask spread of many products widens. Using coherent risk measures, we
extend classical frictionless financial market models to markets with frictions
(for example caused by transaction costs), where prices of assets depend on the
direction of the trade. There is an ask price to buy the asset from the market
and a usually lower bid price to sell the asset to the market. Such models
allow to model (il)liquidity of financial markets very well as we show by several
empirical studies.

The structure of this thesis is as follows: Chapter I introduce simple fric-
tionless markets. We define many technical and financial terms which are used
throughout the thesis. Chapter II analyses empirically advanced frictionless
stock price market models. Chapter III introduces coherent risk measures and
discusses representation of concave distortion functions and applications to in-
surance science. In Chapter IV we define markets with frictions based on results
from Chapter III. The structure of the thesis is visualized in Figure 1.

In Chapter II we analyse advanced stock price models empirically. There
is an endless list of advanced stock price models generalizing the Black-Scholes
model and being able to capture many stylized facts typically observed in fi-
nancial time series like fat-tail behaviour of log-returns, volatility clustering and
negative correlation between volatility and stock price movements known as the
leverage effect. There are several studies in the literature showing that many
advanced stock price models can be calibrated very well to plain vanilla option
data, in the sense that different models lead to almost identical plain vanilla
prices. However, the calibrated advanced stock price models may lead to very
different exotic option prices. This is known as model risk. In Chapter II we
investigate the question which model best explains exotic option data. We cal-
ibrate six advanced stock price models to a time series of real market data of
European options on the DAX, a German blue chip index. Via a Monte Carlo

1See Somanathan and Nageswaran (2015) for an introduction to derivatives containing a
critical view on the subject, in particular a discussion of the role of derivatives in the global
financial crisis 2008.
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simulation, we price barrier down-and-out call options for all models and com-
pare the modelled prices to given real market data of the barrier options. There
are three contributions in this work: a) this is the first study which focus only
on models describing the volatility by a stochastic process and incorporating a
leverage effect. To the best of our knowledge, this is the first time exotic op-
tion prices are simulated under Lévy processes with stochastic time-change and
leverage. b) in contrast to former studies, we also compare the simulated prices
to real market data of equity barrier options. Hence for our particular data set,
we are able to decide which model reproduces barrier option data best. c) we
provide some analysis why some models overvalue and other models undervalue
barrier options.

We devote Chapter III to introduce coherent risk measures induced by con-
cave distortion functions. Fundamental research motivates us to study the con-
nection between concave distortion functions and distribution functions. We
prove a representation theorem and show that a family of concave distortion
functions satisfying a certain translation equation can be represented by a dis-
tribution function. The representation theorem helps to interpret concave dis-
tortion functions. An application of this theorem can also be found in insurance
science. Premium principles in actuarial science are used to determine the ini-
tial payment, known as the premium, an insured has to pay to the insurance
company in return for an insurance contract. For example the premium can
be calculated by the expected loss of the insured object plus a multiple of the
standard deviation of the loss. Moment based premium principles are easy to
understand but in general are not monotone and cannot be used to compare
the riskiness of different insurance contracts with each other. Our representa-
tion theorem makes it possible to compare two insurance risks with each other
consistent with a moment based premium principle by defining an appropriate
coherent risk measure. Coherent risk measures are also a useful tool to define
markets with frictions, as will be seen in Chapter IV.

In Chapter IV we turn our attention to markets with frictions. Stocks are
usually traded on stock exchanges which demand some fee from the investor to
trade the stock. It is therefore reasonable to assume that the prices for buying
and selling the stock differ. The investor has to pay more money for purchasing
the stock than she receives when selling it. We introduce markets with frictions
in discrete time, i.e. there are only a finite number N of timepoints when
the risky asset can be traded. Bid and ask prices are defined using concave
distortions as discussed in Chapter III. We look at two special cases: in the
static case, N = 1, we obtain closed-form solutions for bid and ask prices of
European options, if the log-returns are normal or Laplace distributed. We also
look at the asymptotic case N → ∞ and prove convergence of bid and ask prices
for many American and Exotic options in a binomial-type model. We obtain
closed-form solutions for bid and ask prices of European plain vanilla and barrier
options. We are motivated to study the asymptotic behaviour of the model to
obtain closed-form solutions for efficient numerical applications. The static case
is interesting because the Laplace distribution might be better suited to model
log-returns than the normal distribution, which appears asymptomatically in

12



the binomial model. Working with real market data, we show that a market
implied liquidity can be computed from an European and an American plain
vanilla option surface describing liquidity over time significantly better than
traditional methods.

Each Chapter II, III and IV is surrounded by a suitable introduction and
conclusion. Chapter V of the thesis suggests ideas for future research. This
thesis is based on journal articles which are either published or are submitted
during the doctoral studies.
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Part I

Introduction to Classical Finance
1 Introduction
Financial markets usually consist of at least one risky asset and a bank-account.
The risky assets might be stocks, commodities like oil or sugar or foreign ex-
change rates. The risky assets are also often called underlyings. The future
prices of the risky assets are unpredictable and modelled by a stochastic pro-
cess. The bank-account on the other hand has a totally deterministic behaviour,
and is therefore also called riskless asset. The bank account is characterized by
some fixed continuously compounded interest rate r > −1: an investor can
deposit any amount of money and one currency unit will grow to ert after t
years. t is measured in fractions of a year, if the investor deposits money for one
month we have t = 1

12 . She can also borrow money from the bank and for each
currency united borrowed, she has to return erT to the bank. Any model has to
abstract from reality and assuming that the interest rates and borrowing rates
are equal and independent of the time-horizon is such a simplifying abstraction.

In this thesis, there is usually only one risky asset, which models a stock
(Stocks represent a partial ownership of a company like Apple Inc., CaixaBank
S.A. or Siemens AG) or an index on stocks. Markets where stock can be traded
are called equity markets. A stock market index represents a basket of stocks,
also called portfolio and is computed as an weighted average from the prices
of selected stocks. For example the S&P 500 Index is based on the market
capitalizations of 500 large American companies. The DAX 30 on the other
hand consists of 30 mayor German companies. For many indices there are
funds, called exchange traded funds (ETF), replicating the index. For example
the SPDR S&P 500 ETF Trust replicates the S&P 500 index. It contains the
same stocks in the same ratio as the S&P 500 index and can be traded as a
usual stock. Funds replicating the S&P 500 are examples of diversified portfolios
because they do not focus on a single asset or single line of business but rather
invest in a variety of different stocks and reduce thereby the exposure to any
particular stock.

Companies may pay dividends to its shareholders. This may happen if the
company earns a profit and does not re-invest the profit. Simplifying, we assume
that the stock pays a continuous annualized dividend yield at rate q, i.e. a stock
paying dividends is modelled by St = e−qtS̄t, where

(
S̄t
)

describes the stock
price process, if the dividend would be reinvested in the company, see Schoutens
(2003, Section 2.6) for details.

2 Classical Financial Markets
This Section introduces some basic concepts of mathematical finance. The main
notation and financial terms used in the thesis are defined and presented. Read-
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ers familiar with financial terms and concepts may just glance over this Section.
We will mention and explain the following terms, which frequently appear in
the whole thesis:

• Economic terms: underlying, stocks, equity market, stock market index,
exchange traded fund, bank account, riskless and risky asset, dividend
yield, interest rates, portfolio, diversification, discounting, future random
cash flow, log-returns.

• Financial market classifications: frictionless markets, markets with fric-
tions, complete and incomplete markets, static, discrete and continuous
time trading.

• Arbitrage: arbitrage opportunity, arbitrage-free price, bid, ask and risk-
neutral price, equivalent martingale measure, martingale, self-financing
trading strategy, zero initial investment.

• Derivatives: contingent claim, call or put plain vanilla option, strike, ma-
turity, put-call parity, moneyness, barrier, down-and-out, down-and-in,
knock-out, option premium, holder, owner or buyer and writer or seller
of an option, Black–Scholes formula, implied volatility, implied volatility
index.

• Mathematical terms: random path, filtration, usual conditions, stochastic
process, adapted and predictable process, objective function, calibration.

In the following let us formally introduce discrete time frictionless financial mar-
kets, which are technical much easier to handle than continuous time financial
markets. In Section 2.2 we comment on continuous time financial markets as
well. We try to answer the following questions:

i How can a financial market, in particular stocks, be modelled over time?

ii How can we (mathematically) guarantee that the market model makes eco-
nomically sense? The market should work efficiently, in particular it
should not be possible to make money out of nothing. The analogue
of a perpetual motion machine in physics is called arbitrage in economics.
We will provide some conditions to guarantee that the market model is
arbitrage-free.

iii From a mathematical point of view not only the stock itself but, contracts on
the stock, which change their value depending where the stock is moving,
are very interesting. How do we price such contracts without introduc-
ing arbitrage opportunities in the market? If there are more than one
arbitrage-free price for the contract, which one do we choose?

2.1 Discrete Time Market Model
In this Section we introduce financial markets in discrete time. We follow closely
Föllmer and Schied (2011, Section 5) and Schoutens (2003, Section 1 and 2).
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Let T > 0 be some time-horizon. Let N ∈ N be the number of possible
trading periods in the interval [0, T ]. Trading can take place at the timepoints{

0, T
N
, ...,

T (N − 1)
N

,T

}
,

i.e. the interval [0, T ] is divided into N equidistant time steps. There are no
trading restrictions: stocks can be bought and sold for the same price in any
quantities. The time-horizon T is usually measured in fractions of a year and
one trading period might for example correspond to a day, an hour or just a
second. The special case N = 1 is called a static market model, if N > 1 we
speak of a multiperiod or discrete market model. In a static model, trading can
take place only twice: today and at the end of the time-horizon.

We assume there are d+ 1 assets (one bank account and d risky assets). We
model the kth asset by a discrete time stochastic process, which is a collection
of random variables on a given probability space (Ω,F ,P) over the index set
{0, .., N} and denoted by Sk =

(
Ski
)
i=0,..,N . Every ω ∈ Ω corresponds to a

particular scenario of market evolution and Ski (ω) is the price of the kth asset
after i trading periods if scenario ω occurs.

For a fixed trading period i, the map Ski : Ω → [0,∞) is a random variable
and for a fixed ω ∈ Ω, the map

{0, .., N} → [0,∞)
i 7→ Ski (ω)

is called a realization of a random path of asset Sk. Assets S1, ..., Sd represent
risky assets, for example different stocks. We assume the asset S0 is a riskless
bank account and can be modelled by the deterministic process

S0
i = er

iT
N , i = 0, ..., N,

where r are some interest rates. Today the prices of all assets are known and
deterministic, we denote them by the tuple

(
S0

0 , ..., S
k
0
)

∈ Rd+1
+ . The prices of

the risky assets at trading period i ∈ {1, .., N} are modelled by nonnegative
random variables Ski , k = 1, .., d. The random variable Ski is assumed to be
measurable with respect to a σ−Algebra Fi ⊂ F . One should think of Fi as
information available after i trading periods. It is therefore assumed that

Fi ⊂ Fj ⊂ F for i < j, i, j ∈ {0, .., N} and F0 = {∅,Ω} and FN = F .

The family (Fi)i=0,...,N is called filtration and models the knowledge of an in-
vestor over time. At period i the investors only knows Fi. Let I ⊂ R be some
interval. After i trading periods, the investor knows sets like

A := {ω ∈ Ω : Ski (ω) ∈ I}

because the fact that Ski is Fi−measurable means A ∈ Fi, i.e. the investor is
able to decide if the price of the kth asset lays within the interval I. Sets like

{ω ∈ Ω : Ski+1(ω) ∈ I}
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on the other hand are elements of Fi+1 and are not yet known to the investor.
This means after i trading periods, the history of the stock prices and the present
stock prices, i.e. the stock prices at period 0, .., i are known to the investors but
future stock prices at periods i+ 1, ..., N are unknown.

Definition 2.1. A stochastic process (Yi)i=0,..,N is called adapted with respect
to the filtration (Fi)i=0,..,N if each Yi is Fi−measurable.

The risky assets are modelled by adapted processes. We denote the collection
of the riskless and the risky asset by the d+ 1 dimensional stochastic process

S =
(
Si
)
i=0,...,N =

(
S0
i , ..., S

d
i

)
i=0,..,N .

SkN describes the price of the risky asset Sk at time T . If d = 1 and ambiguity
can be excluded we also may write ST instead of S1

N in particular in static time
financial markets.

In order to compare different assets over time, investors often compare their
relative price changes, which leads to the following Definition:

Definition 2.2. The return of asset Sk between the periods i < j is defined by

Skj − Ski
Ski

.

The log-return is defined by

log

(
Skj
Ski

)
.

Often it is more convenient to work with log-returns. Many stock price
models are defined by the exponential of some stochastic process. Using log-
returns is then a natural choice. Furthermore log-returns can be added up over
several periods. The log-return between period i and i + 2 is the same as the
sum of the log-returns between periods i and i+ 1 and i+ 1 and i+ 2.

2.1.1 Trading Strategies

Next we define a trading strategy, i.e. a way to invest in the different risky
assets. At the beginning of a trading period, an investor has to decide which
stock to sell and which to buy. Hence the investors knows at the beginning
of each period which stock she will hold in which amount at the end of the
period. Trading strategies are plannable or predictable. Before we define a
trading strategy, let us define what is meant by a predictable process.

Definition 2.3. A process (Zi)i=1,..,N is called predictable with respect to the
filtration (Fi)i=0,..,N−1, if Zi is Fi−1−measurable for i = 1, .., N .

At time t = 0 the investor may choose a portfolio, i.e. numbers

ξ1 = (ξ0
1 , ..., ξ

d
1) ∈ Rd+1,

17



which correspond to quantity of shares invested in the various assets. If ξ0
1 is

negative, she borrows
∣∣ξ0

1
∣∣ currency units from the bank otherwise she makes

a deposit. Similarly if ξk1 is positive, she buys asset Sk, otherwise she sells it.
If ξk = 0 she does not trade asset Sk. The amount of money invested in asset
Sk today is ξk1Sk0 . After one period, i.e. at time t = T

N , her portfolio has the
(random) value

ξ1 · S1 =
d∑
k=0

ξk1S
k
1 .

After the first trading period she may rearrange the portfolio, which leads to
the definition of a trading strategy:

Definition 2.4. A trading strategy is a predictable Rd+1 valued process

ξ = (ξ0
i , ..., ξ

d
i )i=1,...,N .

The values
ξi =

(
ξ0
i , ..., ξ

d
i

)
correspond to the quantity of shares held during period i, i.e. between the
timepoints (i−1)T

N and iT
N .

Definition 2.5. A trading strategy is called self-financing if

ξi · Si = ξi+1 · Si, i = 1, ..., N − 1.

At period i − 1 we invested some amount of money which is worth ξi · Si
at period i. At period i, we then rearrange the portfolio in such a way that
the value of the portfolio does not change. A self-financing trading strategy is a
way to invest in the market without exogenous infusion or withdrawal of money
except for an initial investment; the purchase of new assets must be financed by
the sale of old ones.

Example 2.6. Assume d = 1, i.e. there is just one risky asset. If the investor
has no own capital, she can still trade. For example, she could simply set

ξ0
1 = −S1

0 and ξ1
1 = 1,

i.e. finance the purchase of the stock completely by debts. At time T she owns

−S1
0e
rT + S1

N

currency units, if she does not change her portfolio any further, i.e

ξ0
i = S1

0 and ξ1
i = 1, i = 0, .., N.

Such a strategy is a self-financing strategy with zero initial investment.
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2.1.2 Discounting

Definition 2.7. Let Z be a F−measurable random variable. A contract which
promises to pay Z(ω) at time T , if the event ω occurs is called a future random
cash flow.

Mathematically, a future random cash flow is just a random variable. But
it has some economic meaning, it describes the movement of money from one
counterparty of the contract to another. The amount of money

Z = −S1
0e
rT + S1

N

an investor receives by following the strategy described in Example 2.6 is a
future random cash flow. It can be negative, in which case the investor makes
a loss.
Remark 2.8. One currency unit today grows to ert currency units at timepoint
t. An investor is therefore indifferent to receive x > 0 currency units at time
t or xe−rt currency units today. If she received xe−rt currency units today,
she could deposit the money at the bank account and obtain x currency units
at time t. If Z is a random variable modelling some future random cash flow
promised to be paid at time t, the value e−rtZ is called the discounted value of
Z. Discounting is necessary in order to be able to compare today two future
random cash flows, which are promised to be paid at different future timepoints.

The discounted price process of the risky assets are defined by

Xk
i := Ski

S0
i

, ...i = 0, ..., N, k = 0, ..., d.

The discounted price process describing the bank account is equal to

S0
i

S0
i

= 1

all times. We summarize the discounted price processes in a vector

X = (X0, ..., Xd).

Definition 2.9. The discounted value process V = (Vi)i=0,..,N associated with
a trading strategy ξ is given by

V0 := ξ1 · S0 and Vi := ξi ·Xi, i = 1, ..., N.

The discounted gains process associated with ξ is defined as

G0 := 0 and Gi :=
i∑

j=1
ξj ·

(
Xj −Xj−1

)
, i = 1, ..., N. (1)
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The value Vi can be interpreted as the portfolio value after i trading periods.
The gain process represents the net gains which have accumulated through the
trading strategy ξ after i trading periods. The sum in Equation (1) could be
seen as a discrete version of a stochastic integral, compare with Equation 5. It
can be shown that a strategy is self-financing, if and only if

Vi = V0 +Gi, i = 0, ..., N, (2)

see Föllmer and Schied (2011, Proposition 5.7).

2.1.3 Arbitrage Opportunities

In classical finance the absence of arbitrage is a standard assumption. Arbitrage
opportunities are trading strategies with zero initial investment, without the
possibility of losing money but with some chance to make a positive return and
are precisely defined in the next Definition:

Definition 2.10. An arbitrage opportunity is a self-financing trading strategy
whose value process satisfies

V0 ≤ 0, VN ≥ 0 P − a.s., and P(VN > 0) > 0.

The trading strategy mentioned in Example 2.6 is not an arbitrage oppor-
tunity, if

P
(
S1
N < S1

0e
rT
)
> 0,

which is usually the case. The very essence of a stock and its risky structure
is the fact that it might perform worse than a bank account. The existence
of an arbitrage opportunity in a financial market can be regarded as a market
inefficiency in the sense that the risky asset is not priced in a reasonable way. We
say the market is arbitrage-free if there do not exist any arbitrage opportunities.
From an economic point of view it is therefore necessary to prove that the market
model we are working with is arbitrage free. We have the following result, which
is known in literature as the first fundamental theorem of asset pricing. Before
we state it, we introduce the notation of an equivalent martingale measure.

Definition 2.11. A probability measure Q on (Ω,F) is called an equivalent
martingale measure if Q is equivalent to P, i.e.

P(A) = 0 ⇔ Q(A) = 0, A ∈ F ,

and the discounted price process X is a Q−martingale, i.e.

EQ[
∣∣Xk

i

∣∣] < ∞ and Xk
i = EQ[Xk

j

∣∣Fi], 0 ≤ i ≤ j ≤ N, k = 0, .., d. (3)

The term EQ[Xk
j

∣∣Fi] denotes the conditional expectation of Xk
j under the

measure Q conditioned on the σ−Algebra Fi. In particular it holds

Sk0 = e−rTEQ[SkN ], k = 0, ..., d,
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or vectorized
S0 = e−rTEQ[SN ] = EQ[XN ], (4)

i.e. the prices of the risky assets can be seen as the expected values of (dis-
counted) future stock prices. This sounds like a fair game. Indeed an equivalent
martingale measure can be seen as an artificial measure under which the dis-
counted stock price process behaves like a fair game. Under the real world
measure P the stock might behave quite differently: P and Q only have the
same Null-sets. An equivalent martingale measure is also called a pricing mea-
sure or an equivalent risk-neutral measure, because this measure can be used for
pricing and does not take any risk preferences of investors into consideration.
The usefulness becomes clear in Theorem 2.12 and Theorem 2.17. Let Q denote
the set of all equivalent martingale measures.

Theorem 2.12. The market is arbitrage-free if the set of equivalent martingale
measures Q is not empty.

Due to the fundamental importance of this theorem, we highlight the main
idea of the proof:

Proof. We only show the static case N = 1. Assume Q ̸= ∅ and let Q ∈ Q be
an equivalent martingale measure. For a trading strategy ξ let VN = ξ1 · XN

and assume VN ≥ 0 P−a.s. and P (VN > 0) > 0. Both properties remain valid
if we replace P by Q because the measures are equivalent to each other. Then
it follows

V0 = ξ1 · S0 = ξ1 · EQ
[
XN

]
= EQ [VN ] > 0,

see Equation (4), i.e. ξ is not an arbitrage opportunity.

The converse also holds true but is much harder to prove, i.e. the absence of
arbitrage guarantees the existence of at least one equivalent martingale measure.
The complete proof can be found in most textbooks about financial mathemat-
ics, see e.g. Föllmer and Schied (2011, Theorem 5.16).

2.1.4 European Contingent Claims

Definition 2.13. A nonnegative future random cash flow, i.e. a nonnegative
random variable C on (Ω,F ,P) is called a European contingent claim.

A contingent claim C is a contract. The holder, owner or buyer of the
contract receives the nonnegative amount C(ω) from the writer or seller of the
claim at timepoint T if the event ω occurs. Today, the holder has to pay a
non-stochastic premium π ≥ 0 to the writer to receive the contract C in return.
Many contingent claims contain some optionality and are therefore also called
options.

Example 2.14. The holder of a European plain vanilla call option with maturity
T on asset Sk has the right, but not the obligation, to buy asset Sk at time T
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for a fixed price K, called the strike price. This contract can be described by
the random variable

CCall = max(SkN −K, 0) =: (SkN −K)+.

A contract called European plain vanilla put option with strike K and maturity
T on asset Sk can be described by the random variable

CPut := (K − SkN )+.

The ratio between the stock price today and the strike is called moneyness.
For call options it is defined as Sk

0
K and for put options it is defined as K

Sk
0

.
We say an European plain vanilla option is in-, at-, and out-of-the-money if
the moneyness is greater than 1, equal to 1 and smaller than 1, respectively.
The holder of an in-the-money option would receive a positive amount from the
writer of the option if the maturity of the option was today.

A European down-and-out barrier call option with strike K and barrier B is
similar to a plain vanilla call option, but it becomes worthless, if the risky asset
drops below a certain barrier B. This contract can be described by

CDOCall =

(SkN −K)+ , min
i∈{0,...,N}

Si > B

0, otherwise.

While a barrier option depends on the whole path of the asset Sk, a plain
vanilla option only depends on the value of the risky asset at maturity, i.e. only
depends on SkN . If the barrier is not hit, i.e. if the stock remains above B at
the timepoints 0, .., N , the holder of an ordinary plain vanilla option receives
the same amount of money as the holder of a barrier option. When the barrier
is hit, it becomes worthless and disappears from the market. In this case we say
the barrier option is knocked-out.

Another example of a barrier option is a European down-and-in barrier call
option with strike K and barrier B, which can be described by

CDICall =

(SkN −K)+ , min
i∈{0,...,N}

Si < B

0, otherwise.

This barrier option only returns a positive cash flow at maturity under the
condition that the barrier is at least once hit by the stock price process.

Remark 2.15. How are options used? For example for hedging purposes: an
airline sells flight tickets today for flights taking place in a year. We therefore
set T = 1. The airline of course does not know the price ST of jet fuel, which
need to be bought from some oil company in a year. The airline will probably
get into trouble if ST is much higher then today’s jet fuel prices S0. Therefore
the airline might be interested to buy today an insurance protecting against high
fuel prices, i.e. for example a simple at-the-money European plain vanilla call

22



option on a certain amount of jet fuel with maturity T and strike K := S0. The
airline then has the right at time T to buy jet fuel for the price K instead of
ST and will execute this right if ST > K. The airline has to pay some premium
π to the option seller. In this Section we answer the question, how to compute
the premium of European contingent claims. Of course the airline is interested
in paying as little as possible for the insurance against high jet fuel prices. This
is one reason for the existence of barrier options: they are cheaper than plain
vanilla options (but also offer less protection).

For an broad introduction to contingent claims and its use in finance and
economics, see Hull (2017). It should be mentioned that contingent claims,
which are also called derivatives, can be used for purely speculative (gambling)
purposes, too. Assume an investor thinks a stock, which costs S0 = 100 currency
units today, will rise by 5% after one year. Assume she is correct, then she could
make a return of 5% by investing directly in the stock.

A plain vanilla European call option on the stock with strike K = 100 could
cost about 10 currency units today. Buying ten options for 100 currency units
instead of the stock, she makes a return of

(105 − 100) × 10
100

= 50%,

if her prediction about the future stock price is correct. But if the stock costs,
say 99 currency units in a year, she loses 1% of her initial investment when
buying the stock directly, but 100% when betting on the stock using options.
There are certainly many situations for companies to use options to protect
against unpredictable events, but using options for speculative purposes is very
risky.

Usually we know the contract C, see Example 2.14, and have to find a price
π for C. There is a minimum requirement on π: the extended market model
containing the assets S0, ..., Sd and C still should be arbitrage-free. This leads
to the following definition.

Definition 2.16. A real number π ≥ 0 is called an arbitrage-free price of
discounted contingent claim

H := e−rTC,

if there is a nonnegative adapted process Xd+1 such that

Xd+1
0 = π and Xd+1

N = H

and the extended market model (X0, ..., Xd, Xd+1) is arbitrage-free.

The following theorem shows how to find an arbitrage-free price of C.

Theorem 2.17. Let Q be an equivalent martingale measure for the original
market consisting of the assets (X0, ..., Xd). Let C be a contingent claim. As-
sume

π := e−rTEQ[C] < ∞.

The price π is an arbitrage-free price for C.
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Proof. Define
Xd+1
i := e−rTEQ[C| Fi], i = 0, .., N.

Then it follows
π = Xd+1

0 and e−rTC = Xd+1
N .

As Q an equivalent martingale measure for the original market and Xd+1 is by
definition a Q−martingale, Q is also an equivalent martingale measure for the
extended market model, which is hence by Theorem 2.12 arbitrage-free. The
proof is taken from Föllmer and Schied (2011, Theorem 5.29).

2.1.5 Market Incompleteness

Most financial markets are incomplete, i.e. Q contains more then one element,
otherwise the market is called complete. The binomial model, see Cox Ross
and Rubinstein (1979) in discrete time and the Black-Scholes model in contin-
uous time, see Black and Scholes (1973), are prominent exceptions of complete
markets. In the incomplete case two different equivalent martingale measures
Q1,Q2 ∈ Q might lead to different prices for a contingent claim C, i.e

π1 := e−rTEQ1 [C] ̸= π2 := e−rTEQ2 [C].

By Föllmer and Schied (Theorem, 5.29), lower and upper bounds of possible
arbitrage-free prices for C are given by

πinf := inf
Q∈Q

e−rTEQ[C] and πsup := sup
Q∈Q

e−rTEQ[C].

The interval (πinf , πsup) might be very large and it is unclear which price

π ∈ (πinf , πsup)

is an adequate price for C.
We cannot simultaneously price contingent claim CA using equivalent mar-

tingale measure QA and price another contingent claim CB using a different
equivalent martingale measure QB without running into the danger of intro-
ducing arbitrage into the market, i.e. we need to price all contingent claims
consistently by the same equivalent martingale measure.

Example 2.18. For any real numbers x, y, it holds

(x− y)+ − (y − x)+ = x− y.

Hence European put and call options with the same strike K and maturity T
are related with each other by

CCall − CPut = SkN −K.

Discounting and taking expectations under any Q ∈ Q it follows

πCall − πPut = Sk0 − e−rTK,
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which is known as the put-call-parity. The arbitrage-free price of the put option
is totally determined by the price of the call option and vice versa, independently
of the chosen equivalent martingale measure.

To identify this measure, we can use other information available in financial
markets: on many stocks, in particular on stock indices, there exist an option
chain, e.g. a set of plain vanilla put and call options with different strikes and
maturities on the stock index with known prices. Those prices are determined by
supply and demand similar to the prices of ordinary stocks. Generally speaking,
both academics and practitioners use such option chains to choose a particular
equivalent martingale measure Q. In Chapter IV parametric stock prices models
are calibrated to given market prices of plain vanilla options by minimizing the
mean-square error between model and market prices. This procedure is for
example described by Bakshi et al. (1997). Let us assume there is a set of
parameters Θ ⊂ Rn and a bijective function

f : Θ → Q,

i.e. each equivalent martingale measure Q ∈ Q can be identified with a pa-
rameter θ ∈ Θ. Let us further assume there are M > n plain vanilla call
and put options C1, ..., CM with known market prices πC1 , ..., πCM and maturi-
ties T1, ..., TM . We minimize the mean-square error between market and model
prices, i.e. we minimize the objective function

θ 7→

√√√√ M∑
m=1

(
πCm − e−rTmEf(θ)[Cm]

)2

M
.

Let us denote the minimum by θ̂. The existence and uniqueness of a global
minimum is a delicate numerical issue and further discussed in Chapter II.
The thereby uniquely identified equivalent martingale measure Q̂ := f(θ̂) can
then be chosen to price other plain vanilla options with unknown prices or
complex contracts, such as barrier options. This means we compute the price
of a contract (with unknown price) consistently with current market prices of a
certain set of plain vanilla options. No historic data is used, only present market
data. We do this by taking expectations and expectations are linear, therefore
the operator

pQ : L1(Ω,F ,Q) → [0,∞)
C 7→ e−rTEQ[C]

assigning a price to a contingent claim C is also called linear pricing rule or risk-
neutral price operator with respect to the equivalent martingale measure Q. We
call the value e−rTEQ[C] the risk-neutral price of C with respect to the measure
Q.

In Chapter IV we look at markets with frictions and introduce bid and ask
prices for C. The ask price is the price an investor has to pay to purchase C
and the investor only receives the usually lower bid price when selling C. The
risk-neutral price of C lays between the bid and the ask price.
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2.2 Continuous time finance
The notion and many of the results of stochastic finance in discrete time can
be passed to finance in continuous time. See Björk (2009), Bingham and Kiesel
(2013), Musiela and Rutkowski (1997) and Karatzas and Shreve (1998) for an
introduction to stochastic finance in continuous time. See Protter (2001) for a
compact introduction to mathematical finance using semi-martingales. In this
section, we very briefly provide the main notion as a continuous-time extension
of Section 2.1.

In continuous-time finance, we work with a filtered probability(
Ω,F ,F = (Ft)t≥0 ,P

)
that satisfies the usual conditions, i.e.

1. Fs ⊂ Ft ⊂ F if s ≤ t.

2. F0 contains all the P−null sets of F .

3. The filtration is right-continuous: Ft = ∩u>tFu for all 0 ≤ t < 0.

As in discrete time, there are d+ 1 assets with price processes

S =
(
St
)
t∈[0,T ] =

(
S0
t , ..., S

d
t

)
t∈[0,T ] ,

where
S0
t := ert, t ∈ [0, T ],

models a riskless bank account in continuous time and S1, ..., Sd are semimartin-
gales with càdlàg (right-continuous with left limits) paths. The d + 1 random
variable St is Ft−measurable, i.e. the process S is adapted. For example Lèvy-
processes are semimartingales, see Protter (2004, Section 3, Theorem 9). The
process

X =
(
X
)
t∈[0,T ] :=

(
S0
t

S0
t

, ...,
Sdt
S0
t

)
,

is called the discounted price process.
A trading strategy

ξ =
(
ξt
)
t∈[0,T ] =

(
ξ0
t , ..., ξ

d
t

)
t∈[0,T ]

is an adapted càglàd (left-continuous with right limits) process. ξkt represents
the quantities of shares in asset Sk at time t. The value-process (Vt)t∈[0,T ]
associated with a trading strategy ξ is exactly defined as in the discrete case,
i.e.

Vt := ξt ·Xt, t ∈ [0, 1].

The gain-process associated with a trading strategy ξ is defined using the nota-
tion of a stochastic integral, see Protter (2004) for a straightforward introduction
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to stochastic integration and differentiation: for an adapted, càglàd process H
and a semimartingale S, Protter (2001, 2004) defines a stochastic integral by

ˆ t

0
HudSu := lim

n→∞

∑
ti∈πn[0,t]

Hti∆iS, (5)

where πn[0, t] is a sequence of partitions of [0, t] with mesh tending to 0 as
n → ∞. Protter defines ∆iS := Sti+1 − Sti and the convergence is in u.c.p
(uniform in time on compacts and converging in probability). Protter defines
semimartingales as the set of processes, for which the limit of such sums exists.
Using this notation, we define the gain process in continuous time:

Gt :=
tˆ

0

ξudSu =
d∑
k=0

ˆ t

0
ξiudS

i
u,

which can be seen as a continuous version of Equation (1). A trading strategy
is then called self-financing, if

Vt = V0 +Gt, t ∈ [0, T ],

compare with Equation (2).
An arbitrage opportunity is defined as in discrete time. It is a self financing

trading strategy ξ such that V0 = 0 and

VT ≥ 0P − a.s. and P (VT > 0) > 0.

A measure Q is called an equivalent martingale measure if it is equivalent to P
and X is a local martingale (martingales are also local martingales) under Q.
See for example Protter (2004, Section 6) for a definition of a local martingale.

Theorem 2.12 can be passed from discrete to continuous time: the market is
arbitrage-free, if there exists an equivalent martingale measure. In continuous
time, the converse is not true. Only the stronger assumption of no free lunch
with vanishing risk, which can be seen as “approximately” arbitrage opportuni-
ties, guarantees the existence of at least one equivalent martingale measure, see
Delbaen and Schachermayer (1994).

As in discrete time, a contingent claim C described by a F−measurable
random variable can be introduced in the original market. The question arises
how to find a price π for C, which does not introduce arbitrage. Fortunately,
also Theorem 2.17 can be passed to continuous time: if

π := e−rTEQ[C] < ∞,

then π is an arbitrage-free price of C.

Example 2.19. The Black-Scholes model. Black and Scholes (1973) modelled
the risky asset in continuous time via a geometric Brownian motion. We define

St = S0e
(r− 1

2σ
2)t+σWt , t ≥ 0, (6)
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where (Wt)t≥0 is an adapted standard Brownian motion, r describes interest
rate of the risk-free bank account and σ > 0 is equal to the standard deviation
of the log-returns of the stock price at t = 1. σ is called annual volatility or just
volatility. The process (St)t≥0 is a martingale, we present in Equation (6) the
Black-Scholes model as described under the equivalent martingale measure Q.
As a nice feature of this model, there exist closed-form solutions of European
plain vanilla put and call options. For example let CCall be a call option with
maturity T and strike K on the risky asset (St)t≥0, i.e. CCall = (ST −K)+. An
arbitrage-free price πBS of CCall is

πBS(S0,K, r, T, σ) = e−rT
ˆ

Ω
(ST −K)+dQ

= e−rT
√

2π

ˆ
R
(S0e

(r− 1
2σ

2)T+σ
√
Ty −K)+e− y2

2 dy (7)

= S0Φ (d1) − e−rTKΦ (d2) , (8)

where

d1 =
log
(
S0
K

)
+
(
r + σ2

2

)
T

σ
√
T

and d2 = d1 − σ
√
T . The step from Equation (7) to (8) is simple calculus,

see e.g. Föllmer and Schied (2011, Example 5.56). The closed-form solution in
Equation (8) is called the Black–Scholes formula for the price of a call option.
There is a similar formula for put options.

The Black-Scholes formula is usually not directly used for pricing but as
a transformation between volatilities and option prices: for a European plain
vanilla option with known market price πmarket, one can invert the Black-Scholes
formula and compute numerically a σimplied such that

πmarket = πBS(S0,K, r, T, σimplied).

σimplied is called implied Black-Scholes volatility or just implied volatility of the
option. The values r and S0 can be observed in the market and the values K
and T are defined by the contract of the option. Given a many different call and
put options with different strikes and maturities, one can construct an implied
volatility surface as a three-dimensional plot on the grid spanned by the strikes
and maturities.
Remark 2.20. In industry, traders usually prefer quoting the implied volatil-
ity instead of the option prices, because the implied volatility is comparable
across strikes, maturities and underlying assets. Historically at-the-money in-
dex options, i.e. options on a stock market index, have been used to compute
an implied volatility index via the Black-Scholes formula. An implied volatility
index is also called fear index because a high implied volatility expresses the
expectation of market participation of possible large up or down moves of the
stock market index. Nowadays model-free methods have been developed. For

28



example the CBOE Volatility Index (VIX) is implied by S&P 500 index options
by aggregating the weighted prices of puts and calls over a certain range of strike
prices, see CBOE (2018).
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Part II

Performance of Advanced Stock
Price Models when it becomes
Exotic: an Empirical Study
3 Introduction
In this Part, we analyse six advanced stock price models generalizing the famous
Black-Scholes (BS) model as introduced by Black and Scholes (1973). The BS
model describes a stock price process by a geometric Brownian motion with
constant volatility.

Unfortunately, log-returns of stock prices are modelled very poorly by the
normal distribution. Usually log-returns exhibit some fat tail behaviour and are
skewed. Furthermore there are periods with high log-return variance and periods
with low log-return variance. Hence volatility of log returns are not constant
over time but there is some volatility clustering, which motivates to model
volatility by a stochastic process. Also there exist some negative correlation
between log-returns and volatility, known as the leverage effect: if volatility and
uncertainty in a financial market increases, stock prices tend to decrease, see
Cont (2001) for a more extended list of stylized facts of financial times series.

There is an endless list of models generalizing the Black-Scholes model and
incorporating some or all of the stylized facts we just mentioned. The constant
elasticity of variance model has been introduced by Cox (1975). The variance
is not modelled by a stochastic process but the model captures the leverage
effect. Local volatility models replace the constant volatility of the BS model
by a deterministic function of both time and current underlying level, see Dupire
(1994). The Heston model, see Heston (1993), replace the volatility of the BS
model by a mean-reverting stochastic process, the square root process of Cox,
Ingersoll, and Ross (1985), which is allowed to be correlated with the uncertainty
driving the log-returns and is hence able to model both stochastic volatility and
the leverage effect. Bates (1996) generalized the Heston model incorporating the
possibility of jumps of the stock price. Barndorff-Nielsen and Shephard (2001)
developed the BNS model replacing the constant volatility of the BS model by
an Ornstein-Uhlenbeck process. It is possible to integrate a leverage effect into
the BNS model.

One could as well replace the Brownian motion of the BS model by a more
flexible Lévy process. A prominent example is the variance gamma (VG) model
developed by Madan et al. (1998). Pure Lévy models are quite flexible and are
able to describe skewness and fat tail behaviour of log-returns but are stationary
over time. Carr et al. (2003) integrated stochastic volatility by replacing the
time by an independent stochastic process. Lévy models with stochastic time-
change have been described in detail by Schoutens (2003) including algorithms
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to simulate such processes. As in the BNS model, it is possible to allow the
stochastic time change to directly effect the log-returns. We call such models
Lévy models with stochastic time-change and leverage.

Often, a set of prices of European plain vanilla options are known and fi-
nancial models are calibrated to market data of plain vanilla options and are
then used to price exotic options or to construct trading strategies to replicate
plain vanilla or exotic options as good as possible. Most of the presented models
can be calibrated very well to plain vanilla option data in the sense that differ-
ent models lead to almost identical plain vanilla option prices. The question is
whether prices under different models of an exotic option are also approximately
equal. The clear answer is no as the following three studies show.

i) Hirsa et al. (2003) calibrated the VG model, a local volatility model, the
constant elasticity of variance model and the VG model with stochastic
time-change (but without leverage) to plain vanilla options on the S&P
500 index and priced barrier options under the different models. They con-
cluded: “regardless of the closeness of the vanilla fits to different models,
prices of up-and-out call options (a simple case of exotic options) differ
noticeably when different stochastic processes are used to calibrate the
vanilla options surface”.

ii) Schoutens et al. (2003) calibrated the Heston model (with and without
jumps), the BNS model and various Lévy processes with stochastic time
change (but without leverage) to plain vanilla option data on the Eu-
rostoxx 50 index and used the calibrated models to price various exotic
options among them different types of barrier options. They concluded
that all those models can be calibrated almost perfectly to plain vanilla
option data but the resulting exotic option price can differ significantly.

iii) Jessen and Poulsen (2013) calibrated the Black- Scholes model, the constant
elasticity of variance model, the Heston model (with and without jumps),
the Merton jump-diffusion model, the VG model and the VG model with
stochastic time-change (but without leverage) to plain vanilla options on
the USD/EUR exchange rate and priced different types of foreign exchange
barrier options. They concluded: “Models may produce very similar prices
of plain vanilla options yet differ markedly for exotic options.”

In contrast to the two former studies i) and ii) which only worked with real
data of plain vanilla options, Jessen and Poulsen (2013) compared the modelled
prices of barrier options to given market data of the barrier options. For their
particular data, the constant elasticity of variance model best explained the
market data of barrier options, leading to an average relative error of just 0.13%.
The Heston model undervalued the barrier options by 3.48% on average. The
Heston model with jumps priced barrier options significantly worse than the
Heston model with an average absolute errors of 24.7%.

What can we add to the studies i)−iii)? To the best of our knowledge
only Jessen and Poulsen (2013) compared model prices of exotic options to real
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market foreign-exchange data. We repeat that study for equity data. In contrast
to former studies, we focus on models incorporating both stochastic volatility
and the leverage effect. We think this is the first study which applies Lévy
models with stochastic time-change and leverage to simulate exotic options and
which compares model prices and market prices of barrier options on a stock
market index. The effect of incorporating a leverage effect in Lévy time-change
models is discussed in Section 4.6.

For a time-series of about 102 timepoints we are given prices of plain vanilla
options: put and call options with maturities ranging from 0 − 3 years and
moneyness ranging from 0.5 − 1.0 issues by some large international banks. We
calibrate six different models at each timepoint, the Heston model (HES), the
Bates model (HESJ), the BNS model and three Lévy models with stochastic
time-change and leverage to the plain vanilla prices. In this thesis we take the
Normal Inverse Gaussian (NIG) process, see Barndorff-Nielsen (1997a), the VG
process and the Merton jump-diffusion model (MJD), see Merton (1976), and
subordinate them by a random time-change modelled by the integrated square
root process of Cox, Ingersoll, and Ross (1985), abbreviated by CIR. Other
choices are possible, see Carr et al. (2003). The three resulting stock price
models are abbreviated by NIG_CIRL, VG_CIRL and MJD_CIRL, where ’L’
stands for leverage. We chose these six models, because all those models are able
to capture stochastic volatility and the leverage effect and are flexible enough
to model plain vanilla options reasonably well, see Schoutens et al. (2003).
They are further mathematically tractable, can be calibrated relatively fast to
real market data and it is straightforward to implement the models in order to
perform a Monte Carlo simulation.

The practise of recalibrating the models at each timepoint is difficult to
justify economically but it is an industrial standard to ensure that a model price
liquid plain vanilla options as good as possible, see e.g. Jessen and Poulsen
(2013). Over time a financial market changes, new information arrives etc.
which leads to the need of recalibrating the models.

Additionally we have for each timepoint prices of exotic barrier options issued
by the same banks. After calibrating the six models to the plain vanilla market
data, we simulate the prices of the exotic options via Monte Carlo for each model
and each timepoint and compare the real market prices of the exotic options
with the model prices.

Both the plain vanilla and the barrier options are issued by financial insti-
tutions which might default. In this study we do not model the credit risk of
the issuers. We argue that we can neglect the default risk of the issuers because
the issuers have a very high creditworthiness. By this argumentation, we follow
Chen and Kensinger (1990), Chen and Sears (1990), Wasserfallen and Schenk
(1996), Burth et al. (2001) and Henderson and Pearson (2011) among others.
Furthermore the price of an option emitted by some issuer is directly influenced
by the issuer’s default risk. Therefore the calibrated models implicitly contain
the credit risk already. For a direct approach to model the credit risk of the
issuer of derivatives, see Hull and White (1995).

Figure 2 summarizes the main result of this Chapter quite well. It shows a
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Figure 2: Market and model prices of an exemplary exotic option over time
from 24/07/2017 till 21/08/2017. Each day consists of three timepoints. All
options have a ratio of 1:100, i.e. they are entitled to receive 1

100 of the difference
between underlying and strike in cash at maturity if the difference is positive
and the barrier is not hit.

time-series of market and model prices of one single exemplary exotic option. We
see that HESJ reproduces market prices extraordinarily well. The BNS model
overvalues quite a lot and HES undervalues the barrier option slightly. The
Lévy models MJD_CIRL, NIG_CIRL and VG_CIRL behave similarly though
undervaluing the option. The model MJD_CIRL seems to be less robust, being
sometimes close and sometimes far away from the real market price.

This Chapter is structured as follows. In Section 4 we present the models
HES, HESJ, BNS, NIG_CIRL, VG_CIRL and MJD_CIRL and recall the char-
acteristic functions of the log stock price of the six models from the literature.
In Section 5 we describe in detail the data set used in this empirical study.
Sections 6 comments on the calibration and pricing procedure via Monte Carlo.
Section 7 compares the six models, when applied to exotic option data and of-
fers some explanation why some models overvalue and other models undervalue
barrier options. Section 8 concludes.
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4 The Models
4.1 Overview and Calibration
In continuous time finance the risky-asset is modelled by some stochastic process
S = (St)t≥0 on a filtered probability space (Ω,F ,F,P) satisfying the usual
conditions. The market is arbitrage-free, if there exists an equivalent martingale
measure Q on (Ω,F). P is called the real world, the subjective, the historical, the
physical or the statistical measure. We are not interested in estimating P. The
equivalent martingale measure Q on the other hand is an artificial measure and
is used in finance to price financial contract such as barrier options: the price is
equal to the discounted expectation of the contract under the measure Q. We
discuss the parametric models BNS, HES, HESJ, MJD_CIRL, NIG_CIRL and
VG_CIRL. Model n depends on some parameter set

Θn ⊂ RDn , Dn ∈ N,

and for each parameter θn ∈ Θn the price process

Sθn =
(
Sθn
t

)
t≥0

is a martingale under some equivalent martingale measure Qθn . The character-
istic function

φlog(Sθn
t )(u) = E

[
exp

(
iu log

(
Sθn
t

))]
, t ≥ 0,

is known analytically for the six models. Here i denotes the imaginary unit. By
Carr and Madan (1999), the prices of European plain vanilla call options under
the stock price dynamics Sθn can be computed very efficiently using Fourier
techniques. Prices of put options can be obtained by the put-call parity.

We are given for a time series of i = 0, ..., N timepoints Mi plain vanilla call
and put options

C1
i , ..., C

Mi
i

at each timepoint with different strikes and maturities and with known market
prices

πmarket
C1

i
, ..., πmarket

C
Mi
i

.

At each timepoint, we minimize the mean-square error between market and
model prices for all models, i.e. we minimize for model n the objective function

θni 7→

√√√√√ Mi∑
m=1

(
πmarket
Cm

i
− π

model(n)
Cm

i
(θni )

)2

Mi
, θni ∈ Θn.

The price of the plain vanilla option Cmi at timepoint i under model n for the
parameter set θni is denoted by πmodel(n)

Cm
i

(θni ) and can be computed very fast by
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the Carr-Madan formula. Let us denote the minimum by θ̂ni . For most models
the existences and uniqueness of a global minimum is simply not known. Theo-
retical and numerical problems arising when minimizing the objective function
to plain vanilla market option data are discussed in Gilli and Schumann (2012).
Difficulties of the optimization procedure for particular models like the Heston
model are mentioned in Cui et al. (2017). The calibration risk, i.e. the risk of
mispricing exotic options such as barrier options, is discussed in Guillaume and
Schoutens (2012).

Nevertheless stochastic optimisation methods like differential evolution, see
Storn and Price (1997), can be used to minimize the objective function heuris-
tically and return satisfactory results, see Gilli and Schumann (2012).

4.2 Relation of Advanced Stock Price Models to the Black-
Scholes Model

In the following Subsections, we introduce the models discussed in this thesis.
In Section 6 we calibrate the models to real market data of plain vanilla options
on the DAX, a German stock market index. The DAX is a performance index,
all dividends are already included in its calculation. Therefore the models do
not include dividends.

All models are somewhat related to the Black-Scholes model. The stock
price process under the Black-Scholes model, see Black and Scholes (1973) and
Merton (1973), satisfies the stochastic differential equation (SDE)

dSt = St (rdt+ σdWt) , S0 > 0, t ≥ 0, (9)

where r > 0, σ > 0 and (Wt) is a standard Brownian motion. The SDE can
equivalently be written for the log stock price process Zt := log (St),

dZt = d log (St) =
(
r − 1

2
σ2
)
dt+ σdWt, Z0 := log(S0), t ≥ 0. (10)

The solution of Equation (9) is well known, see for example Björk (2009):

St = S0e
(r− 1

2σ
2)t+σWt , t ≥ 0. (11)

The HES model generalizes Equation (9) replacing the constant volatility pa-
rameter σ by a CIR process. A leverage effect is introduced by allowing the
Brownian motion driving the CIR process be correlated with (Wt). The HES
model can generalised by adding an independent jump process to the stock price
process. We abbreviates the resulting process by HESJ.

The deviation of the BNS model starts from Equation (10) and replaces the
constant volatility σ by an Ornstein-Uhlenbeck (OU) process. A leverage effect
can be incorporated by adding the randomness driving the OU-process to the
log stock price.

One can as well start directly from Equation (11) and make the time stochas-
tic by subordination of the Brownian motion, which also introduce stochastic
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volatility. This idea goes back to Clark (1973) and can be generalized further by
replacing the Brownian motion by a more flexible Lévy process X. Like in the
BNS model, a leverage effect can be integrated. The resulting model is called
Lévy model with stochastic time-change and leverage. A general treatment of
this approach can be found in Carr et al. (2003).

Carr and Wu (2004) instead directly paired the Lévy-process with the ran-
dom time-change to introduce a leverage effect. They show that the problem of
finding the characteristic function of a paired Lévy-process with correlated ran-
dom time-change reduces to the problem of finding the Laplace transform of the
random time under a complex-valued measure, evaluated at the characteristic
exponent of the Lévy process. In this thesis, we do not follow this approach.

In order to calibrate a parametric model to real market data of plain vanilla
options, usually the mean-square error between market and model prices is
minimized. This usually means an optimizer calls the objective function very
often, it is therefore essential to price plain vanilla options numerically very fast.
By the Carr-Madan formula, see Carr and Madan (1999), that is possible, if we
have an analytic expression of the characteristic function of the logarithm of the
underlying. In the following Subsections, we present the models HES, HESJ,
BNS, NIG_CIRL, VG_CIRL and MJD_CIRL in more detail and recall their
characteristic function from literature.

4.3 The Heston (HES) and Bates (HESJ) Models
The HESJ model with parameters κ > 0, η > 0, λ > 0, ρ ∈ [−1, 1], σ2

0 > 0,
θ ≥ 0, µJ > −1 and σJ > 0 is described by the following system of differential
equations

dSt
St

= (r − θµJ)dt+ σtdWt + JtdNt, S0 ≥ 0

dσ2
t = κ(η − σ2

t )dt+ λσtdW̃t, σ
2
0 > 0. (12)

(Wt) and
(
W̃t

)
are correlated Brownian motions such that cov

[
dWtdW̃t

]
= ρdt.

If θ > 0, (Nt) is an Poisson process with intensity θ, i.e. E[Nt] = θt, modelling
the dates at which the stock jumps. If θ = 0, (Nt) is set equal to zero for all
t ≥ 0. (Jt) is the percentage jump size (conditional on a jump occurring), such
that Jt + 1 is log-normal distributed:

log(1 + Jt) ∼ N

(
log(1 + µJ) − 1

2
σ2
J , σ

2
J

)
, t ≥ 0.

The Poisson process and the percentage jumps size are assumed to be indepen-
dent and are independent of the two Brownian motions.

The CIR process, described by Equation (12), stays positive if 2κη ≥ λ2,
which is known as the Feller condition, see Andersen et al. (2010). During
the calibration procedure we ensure that the Feller condition is satisfied. The
characteristic function of the log stock price is given by, see Bakshi (1997),
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φlog(St)(u) = E [exp(iu log (St)]
= exp (iu (logS0 + rt))

× exp(ηκλ−2
(

(κ− ρλui− d) t− 2 log
(

1 − ge−dt

1 − g

))
× exp

(
σ2

0λ
−2 (κ− ρλiu− d)

(
1 − e−dt)

1 − ge−dt

)

× exp
(

−θµJ iut+ θt

(
(1 + µJ)iu exp

(
1
2
σ2
J iu (iu− 1)

)
− 1
))

,

where

d =
(

(ρλui− κ)2 − λ2 (−iu− u2)) 1
2

g = κ− ρλui− d

κ− ρλui+ d

The HES model, introduced by Heston (1993), is a special case of the HESJ
model, setting θ = 0, i.e. removing possible jumps of the stock price.

4.4 The BNS Model
The Barndorff-Nielsen and Shephard model (BNS) was introduced by Barndorff-
Nielsen and Shephard (2001, 2002) and Nicolato and Venardos (2001). In the
risk-neutral setting, the log stock-price follows the dynamics

dZt = d log (St) =
(
r − λk(−ρ) − 1

2
σ2
t

)
dt+ σtdWt + ρdzλt, Z0 = log(S0),

dσ2
t = −λσ2

t dt+ dzλt, σ
2
0 > 0,

where (zt) is called a Background-driving Lévy process and follows in the classical
BNS model a Gamma-Ornstein-Uhlenbeck process, i.e.

zt =
Nt∑
n=1

xn.

(Wt) is a standard Brownian motion, (Nt) is a Poisson process, with intensity
parameter a >, i.e. E[Nt] = at and (xn) is a sequence of exponential distributed
random variables with mean 1

2 > 0. The function k is defined by k(u) = −au
b+u .

The three sources of randomness, (Wt), (Nt) and (xn) are mutually independent.
The Poisson process jumps in any compact interval a finite number of times.

Each time it jumps, the variance process
(
σ2
t

)
jumps up and the jump-size is

exponentially distributed. Between two jumps, the variance decreases exponen-
tially, where λ > 0 indicates the speed of the down-move of the variance process.
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At time t = 0, the variance process starts in σ2
0 . The constant ρ ≤ 0 introduces

a leverage effect: each time the variance jumps up, the log stock price jumps
down.

The characteristic function of the log stock price is taken from Schoutens et
al. (2003) and can be expressed as

φlog(St)(u) = E [exp(iu log (St)]
= exp

(
iu
(
logS0 +

(
r − aλρ(b− ρ)−1) t))

× exp
(

−λ−1 (u2 + iu
)

(1 − exp (−λt)) σ
2
0

2

)
× exp

(
a(b− f2)−1

(
b log

(
b− f1

b− iuρ

)
+ f2λt

))
,

where

f1 = iuρ− 1
2
λ−1(u2 + iu)(1 − exp(−λt)),

f2 = iuρ− 1
2
λ−1(u2 + iu).

4.5 Lévy Models with Stochastic Time-Change and Lever-
age

Exponential Lévy processes with stochastic time-change and leverage have been
introduced by Carr et al. (2003). The uncertainty of the stock model is modelled
by a homogeneous Lévy processes X and stochastic volatility is introduced by
subordinating the Lévy process by a mean-reverting positive process, the so-
called square root process of Cox, Ingersoll, and Ross (1985),

dyt = κ(η − yt)dt+ λ
√
ytdW, y0 > 0, (13)

where Wt is a standard Brownian motion and κ > 0, η > 0 and λ > 0. The
mean reversion in this process induces volatility clustering. As for the HES
and HESJ models, we ensure that the CIR process satisfies the Feller condition
during the calibration procedure. We define the integrated stochastic volatility
process by

Yt =
ˆ t

0
ysds, t ≥ 0. (14)

The expected value of the integrated CIR process is given by, see e.g. Schoutens
(2003, Section 7.2.1):

E [Yt] = ηt+ κ−1(y0 − η)(1 − exp(−kt)), t ≥ 0. (15)

The stock price is modelled by

St = S0e
rt+ω(t)+Zt , t ≥ 0,
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where
Zt = XYt + ρyt. (16)

(Xt) is a homogeneous Lévy process with Lévy exponent ψX , i.e.

E
[
eiuXt

]
= etψX (u),

and Yt and yt are defined as in Equations (13) and (14), see Carr et al. (2003).
The processes (Xt)t≥0 and (yt)t≥0 are stochastically independent. ω(t) is a
deterministic mean-correting function, which makes the underlying a martingale
and puts us in a risk-neutral setting. The mean-correting function is defined
below. As in the BNS model, a leverage effect is introduced by the term ρyt.
If ρ < 0, a rise of volatility leads to a fall of the stock price. The characteristic
function of log (St) is given by

φlog(St)(u) = E[exp(iu log(St))]
= exp (iu (log (S0) + rt+ ω(t)))

×Φt(−iψX(u), ρu),

where

Φt(a, b) = Φt(a, b, κ, η, λ, y0) = A(t, a, b) exp
(
κ2ηt

λ2 +B(t, a, b)y0

)
,

A(t, a, b) =
(
c+ κ̄

γ
s

)− 2κη

λ2

,

B(t, a, b) = ib (γc− κs) + 2ias
γc+ κ̄s

,

γ =
√
κ2 − 2λ2ia,

c = cosh
(
γt

2

)
,

s = sinh
(
γt

2

)
,

κ̄ = κ− ibλ2,

ω(t) = − log (Φt(−iψX(−i),−iρ)) . (17)

In the following subsections, we describe briefly three famous homogeneous
Lévy processes and provide analytic formulas of the corresponding Lévy expo-
nents. A general introduction to Lévy processes can be found in Sato (1999),
Schoutens (2003) and Applebaum (2009).

4.5.1 Normal-Inverse Gaussian Process (NIG)

The normal inverse Gaussian (NIG) model has been introduced by Barndorff-
Nielsen (1995, 1997a,b). The NIG process with parameters α > 0, −α < β < α,
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and δ > 0 can be represented as a subordination of a Brownian motion with
drift by the Inverse Gaussian (IG) process:

NIGt := βδ2It + δWIt
, t ≥ 0,

where (Wt)t≥0 is a standard Brownian motion and (It)t≥0 is a stochastically
independent IG process with parameters a = 1 and b = δ

√
α2 − β2. The

density of an inverse Gaussian distribution IG(a, b) with parameters a, b > 0 is
given by

fIG(x) = a√
2π

exp(ab)x− 3
2 exp(−1

2
(a2x−1 + b2x)), x > 0.

A IG process with parameters a and b > 0 is a non-decreasing Lévy process
defined by

It := inf
{
s > 0; B̃s + bs = at

}
, t ≥ 0,

it denotes the first time the standard Brownian motion B̃ with drift b hits the
barrier at. The increments

It+s − Is, t > s ≥ 0,

have an Inverse Gaussian distribution IG(at, b), see Applebaum, (2009, Example
1.3.21). The Lévy exponent of a NIG process is given by,

ψNIG(u) = ψNIG(u, α, β, δ) = −δ
(√

α2 − (β + iu)2 −
√
α2 − β2

)
.

Alternatively, NIG can be parametrized by σ > 0, ν > 0, θ ∈ R such that

ψNIG(u) = ψNIG(u, σ, ν, θ) = −σ

√ν2

σ2 + θ2

σ4 −
(
θ

σ2 + iu

)2

− ν

σ

 ,

where we corrected a typing error in Carr et al. (2003, p. 349) and used the
transformation β = θ

σ2 , α2 = ν2

σ2 + θ2

σ4 and δ = σ.
The symmetric NIG process is a subclass of the NIG process, setting β = 0.

In this thesis, we only work with the symmetric NIG process, because calibration
of the process NIG_CIRL to real market data is more robust in the symmetric
case.

4.5.2 Variance Gamma Process (VG)

The Variance-Gamma (VG) process as been introduced by Madan and Seneta
(1987, 1990), Madan and Milne (1991) and Madan et al. (1998). The VG
process with parameters σ > 0, ν > 0 and θ ∈ R, can be represented as a
subordination of a Brownian motion with drift by a gamma process:

VGt := θΓt + σWΓt
, t ≥ 0,
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where (Wt)t≥0 is a standard Brownian motion and (Γt)t≥0 is an independent
gamma process with mean rate 1 and variance rate ν. The increments

Γt+s − Γs, t > s ≥ 0,

of the gamma process have a gamma density with mean t and variance νt. The
Lévy exponent of the VG process is

ψVG(u) = ψVG(u, σ, ν, θ) = − 1
ν

log
(

1 − iuθν +
(
σ2ν

2

)
u2
)
.

The symmetric VG process is a subclass of the VG process, setting θ = 0. In
this thesis, we only work with the symmetric VG processes, because calibration
of the process VG_CIRL to real market data is more robust in the symmetric
case.

4.5.3 Merton jump-diffusion (MJD)

The uncertainty of the Merton jump-diffusion (MJD) model, Merton (1976), is
modelled by

MJDt := σWt +
Nt∑
k=1

zk, t ≥ 0,

where (Wt)t≥0 is a standard Brownian motion, σ > 0, Nt is a Poisson process
with intensity parameter π > 0, i.e. E(Nt) = πt, and independent of (Wt)t≥0.
The jump-sizes are independent and identically distributed and are modelled by

zk ∼ Normal(γ, σ2
J), k = 1, 2..., γ ∈ R, σJ > 0.

The MDJ process has Lévy exponent

ψMJD(u) = ψMJD(u, σ, π, γ, σJ) = −σ2u2

2
+ π

(
exp

(
iγu− σ2

Ju
2

2

)
− 1
)
.

The MJD_CIRL model has the same ingredients as the HESJ model. For the
HESJ model, a change of the CIR process describing the volatility does not
change the possibility of a (big) jump due to the independence assumption of
the jump comonent. From an economic point of view, if uncertainty in financial
markets increase, it might be desirable that the chance of large stock price
movements, i.e. the chance of a crises, also increase. This effect can be modelled
by the MJD_CIRL model, because the CIR process directly influences the rate
of big jumps for the MJD_CIRL model.

4.5.4 Fix some Parameters of the Various Models

For any ξ > 0 it holds

Φt(−iξψX(u), ρu, κ, η, λ, y0) = Φt
(

−iψX(u), ρu
ξ
, κ, ξη,

√
ξλ, ξy0

)
.
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Without loss of generality, we therefore may fix some of the parameters of the
various models. For NIG_CIRL, we set δ = 1, because

ψNIG(u, α, β, δ) = δψNIG(u, α, β, 1).

Fixing δ = 1 is equivalent of rescaling ρ, η, λ and y0. With the same argument,
we set ν = 1 in the VG_CIRL model, because

ψVG(u, σ, ν, θ) = 1
ν
ψVG(u, σ

√
ν, 1, θν).

And for MJD_CIRL, we set π = 1, because

ψMJD(u, σ, π, γ, σJ) = πψMJD(u, σ√
π
, 1, γ, σJ).

For all three models one could as well set y0 = 1. This has been done by
Schoutens et al. (2003) and Carr et al. (2003). We find our choices numerically
more stable.

4.6 The Leverage makes the Difference
Lévy models including only stochastic volatility (ρ = 0) seem to have a lower
path fluctuation compared to models incorporating also a leverage effect (ρ < 0)
and therefore a lower probability of hitting the barrier.

Indeed Schoutens et al. (2003) reported that Lévy models with stochastic
time-change (but without leverage) tend to overvalue some down-and-out barrier
call options relative to the Heston model by roughly 70% but undervalue down-
and-in barrier options by roughly 35%. A down-and-out (down-and-in) option
is less (more) worth, the higher the probability hitting the barrier. We also
calibrate the VG model with stochastic time-change and leverage to the plain
vanilla option data used by Schoutens et al. (2003) and show that prices of
down-and-out and down-and-in barrier call options of the Lévy model with
leverage are quite close to the prices prognosticated by the Heston model, see
Table 1. This simply highlights the fact that one cannot ignore the leverage
effect in a model when pricing exotic options.

5 Market Data
5.1 Plain Vanilla Options
We look at a time series from 05/07/2017 till 21/08/2017, which contain 34
trading days. At each trading day, there are three timepoints, namely “morning”
(10am-10:30am), “midday” (1pm-1:30pm) and “afternoon” (4pm-4:30pm) on
which prices of in total about 471.000 European plain vanilla put and call options
with maturities ranging from 0 − 3 years and moneyness ranging from 0.5 − 1.0
are available on the DAX, a blue chip stock market index consisting of the 30
major German companies.

42



Model RMSE Down-and-out call Down-and-in call
HES 3.0 173.03 336.35

VG_CIR 2.4 293.28 218.51
VG_CIRL 1.8 191.72 319.22

Table 1: This table reports the root mean-square error (RMSE) between model
and market prices of plain vanilla options and simulated prices of two exotic op-
tions for three models: the Heston model, the variance gamma model with
stochastic time-change (VG_CIR) and the VG_CIR model incorporating a
leverage effect (VG_CIRL). The first two rows are taken from Schoutens et
al. (2003). The underlying is equal to S0 = 2461.44. The strikes of the exotic
options are equal to S0 and the barriers are equal to 0.95S0. The maturities are
three years and the risk-free interest rate is set to 0.03, the dividends are assumed
to be zero. The VG_CIRL process is described in Section 4.5, its calibrated
parameters are: σ = 0.205396, ν = 0.009892, θ = −0.115094, κ = 0.582229,
η = 0.98048, λ = 1.347724, y0 = 1.0, ρ = −0.114496.

We follow the methodology applied for the volatility index (VIX) by the
Chicago board of exchange, see CBOE (2018), and only use out-of-the-money
options for calibration, see also Carr and Wu (2009).

The DAX is a performance index, all dividends are included in its calculation.
In total there are thus 102 timepoints. The DAX and the VDAX-New, the
corresponding volatility index, are plotted in Figure 3 to provide an indication
of the market situation of the analysed period.

Those options are issued by the financial institutions Commerzbank, UBS
and UniCredit, which usually also act as a market maker. The options are listed
on different stock exchanges in Germany, mainly on Frankfurt stock exchange
and Stuttgart stock exchange. They can also be traded over the counter, directly
with the issuer. Due to some missing data, not all option prices are available at
each timepoint. But each option with a short maturity (less than three month)
and being deep out of the money (moneyness is smaller than 0.85) can be found
at least on 65% of all observations. Prices of all other options are available at
least on 85% of all observations2.

Figures 8 and 9 show a relative stable distribution over time for different
maturity and moneyness buckets for one exemplary issuer, the option data of
the other issuers look similar.

We use the following abbreviations: “dOTM” means “deep out-ouf-the money”
and refers to a moneyness smaller than 0.85. “OTM” stands for “out of the
money”, which is a moneyness between 0.85 and 1.00. The maturity is mea-
sured in months. For all issuers, there are roughly the same number of OTM
call and OTM put options for all maturities. But there are usually much more
dOTM put options than dOTM call options.

The absolute average spread (ask − bid) over all products of all banks is
2In the case the option expires before the 21/08/2017, the percentages relates to the number

of observations till maturity of the option.
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0.03 EUR. The average relative spread
(

ask−bid
1
2 (ask+bid)

)
is 5%. In Table 4 several

quantiles of the absolute and the relative spread are shown. For most options,
the spread is small.
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Figure 3: End of day values of DAX and VDAX-New. The VDAX-New reached
its hightest value of 18.0% at 10/08/2017 which corresponds to timepoint 81. In
mid-Agust, the North Korea crisis escalated rhetorically, which explains the rise
of the volatility index economically. The VDAX-New was lowest on 17/07/2017
(timepoint 27) at a level of 12.2%.

5.2 Exotic Options
We obtained in total 303.000 bid and ask quotes of down-and-out barrier (DOB)
call-options for the same time series consisting of 102 timepoints in the period
from 05/07/2017 till 21/08/2017 and issued by the same issuers as described in
the previous section. The payoff of such option with strike K and maturity T
is

DOB(K,T ) =

{
max(ST −K, 0) , inf

0≤t≤T
St > K

0 , otherwise.
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The strike and the barrier are equal. The process (St)t≥0 describes the stock
price under an equivalent martingale measure. A call option with the same
maturity T and strike K is called the corresponding plain vanilla option. If the
barrier is hit before maturity, the DOB option become worthless, otherwise it
has the same payoff as the corresponding plain vanilla option. It is clear that the
corresponding plain vanilla option is always in-the-money otherwise the barrier
would be knocked-out. For each exotic option, we compute the price of the
corresponding plain vanilla option using an implied volatility surface which we
obtain from the plain vanilla data set, see Section 5.1. We focus on all exotic
options, which are “exotic” enough, i.e. whose exotic prices are smaller than 0.75
times the corresponding plain vanilla prices. This essentially means removing all
exotic options whose corresponding plain vanilla options are deep in-the-money.
We are then left with about twenty thousands exotic options with maturities
ranging from a few days to half a year. The moneyness of the corresponding
plain vanilla options lay between 1.01 and 1.07.

Due to our selection-procedure we focus on exotic options whose barriers lay
slightly below the underlying. We therefore face a different set of exotic options
at each timepoint: as the underlying is changing over time, some barrier option
might be knock-out, if the underlying decreases, and hence disappear from the
data set. Or, if the underlying increases, some barrier options might move too
far in-the-money, and are also removed from the data set because they are not
exotic enough any more and are filtered by our selection procedure. There are
some exotic options with a timeline with missing data as well. Therefore the
set of identification numbers of the exotic options and the strikes differ over
time. But the maturities and the moneyness of the corresponding plain vanilla
options are more or less stable over time. 99.9% of the absolute bid-ask spreads
of all exotic options are smaller or equal than 0.02 EUR.

6 Methodology
6.1 Calibration
For each issuer and at each timepoint, we calibrate the models BNS, HES, HESJ,
MJD_CIRL, NIG_CIRL and VG_CIRL to prices of plain vanilla options by
minimizing the mean-square error between market prices and model prices. We
obtain for each model a time series of parameters. Table 5 shows the average
root mean-square error (RMSE) for the various models over all timepoints and
the average estimated parameters. We conclude that all models can be fitted
very well to real market data. This is in line with the results of Schoutens et al.
(2003).

6.2 Pricing via Monte-Carlo
For each issuer, each timepoint and each model, we take the parameters ob-
tained by calibrating the various models to plain vanilla option market prices,
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see Section 6.1, and price all available exotic barrier options via Monte-Carlo
simulations. For each options we use M = 200, 000 simulations and a timestep
of δ = 4.0 · 10−5 business years, which corresponds to a grid-size of about five
minutes. Such a narrow grid-size is necessary, to keep the discretion error small.
The price of an option whose barrier is very close to the underlying reacts quite
sensitive to the number of time-steps chosen to discretize the underlying. We
use variance reduction techniques by control-variates. The simulation of jump-
diffusion models are standard, see for example Glasserman (2013). Simulation
techniques for Lévy processes with stochastic time-change and the BNS model
can be found e.g. in Schoutens (2003).

7 Pricing Ability of The Models
We present the simulation results in two steps. First we give an aggregated
overview of all simulated exotic options, then we turn to about 38 particular
options and analyse the corresponding time series of the residuals: the relative
difference between model and market prices.

In Figure 4 and Figure 5, we see the relative differences between market
and model prices of all exotic options for the various models. On average HES
undervalues exotic options with short maturities (less than three months) by
about 7% and options with long maturities (between three and six months) by
about 5%. HESJ explains exotic option market data best, but still undervalues
options with short and long maturities by about 4% and 1% respectively. BNS
has the greatest bias overvaluing the options by about 19% on average. The
Lévy models MJD_CIRL, NIG_CIRL and VG_CIRL undervalue the barrier
options by about 13% on average.

The patterns are independent of the issuer of the exotic options and are simi-
lar also under different market environments: while the first half of the analysed
timepoints correspond to a rather calm market environment (the volatility in-
dex get as low as 12.2%, see Figure 3, in the second half, uncertainty measured
by the volatility index raises at its top to 18%, which is a difference of 50% to
its lowest level.

MJD_CIRL is less stable than the other models. On August, 11th in the
morning, there is a big peak at timepoint 82 in Figures 4 and 5 demonstrat-
ing that MJD_CIRL is undervaluing the barrier options by up to 60%. The
model is calibrated using differential evolution, which is a stochastic optimizer
independent of any starting point. The estimated parameters and the RMSE
between model and market prices are shown in Table 2. Note the particular
high values of the parameters describing the speed of mean reversion, κ and the
“vol of var”, λ.

Choosing the optimal parameter set of the previous timepoint 81 as starting
point and the Nelder-Mead algorithm, see Nelder and Mead (1965), instead to
search for an optimum, leads to a slightly less satisfactory parameter set. But
pricing the barrier options using these new parameters, leads to a much better
result: the relative difference between model and market prices shrinks to about
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Figure 4: Relative Differences between market and model prices, maturity less
than three months. The point at timepoint 82 corresponds to another parameter
set for the MJD_CIRL model.
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between market and model prices for various models for the options of Table 7.
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DE NM
RMSE 0.0526 0.0599
σ 0.18 0.26
π 1.00 1.00
γ -0.24 -0.30
σJ 0.17 0.14
κ 10.71 3.41
η 0.32 0.21
λ 1.98 1.00
y0 0.12 0.13
ρ -0.26 -0.45

Table 2: Calibration Details MJD_CIRL on August, 11th in the morning using
two different optimizer: differential evolution (DE) and the Nelder-Mead (NM)
algorithm.

-12% and -22% as shown by a point in Figures 4 and 5, respectively. Calibrating
MJD_CIRL is less robust than calibrating the other models.

As described in Section 5.2, at each timepoint we are aggregating a different
set of options because over time not all options are available. We therefore
choose 38 options, their security identifier code can be found in Table 7, for
which exotic option prices are available at all timepoints in the interval [50,102],
except for seven options, which knock-out at timepoint 81 and 82. For those
options, prices at about 30 timepoints are available.

All exotic options of our sample are numbers from 1,2,...,38, ordered by
strike, see Table 7. The maturities lay between 0.3 and 0.4 years throughout
the whole time series. The mean and standard deviation of the time series of the
relative residuals between market and model prices of each option can be found
in Figure 6. We see that the standard deviation of the residuals for the models
HES, HESJ, NIG_CIR and VG_CIR are similar for all 38 options and lower
than 0.05. The standard deviation of the residuals of the MJD_CIRL model
vary between the options a lot and are higher than 0.1 for many options. This
once more underlines that MJD_CIRL is less robust than the other models.

7.1 Path Characteristics
In this section, we attempt to provide some characteristics of the path-behaviour
of the various models under the risk-neutral measure. That helps to understand
the models and might (partially) answer the question why some models over-
value and other models undervalue the barrier option data set from Section
5.2.

For a stochastic process St∈[0,1] describing a stock price we define some
characteristics as follows. All characteristics refer to the interval [0, 1], i.e. to
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the period of one year.

h = Probability the process hits 0.95S0 at least once,
σ =

√
Var(S1),

Jlog = Expected number of times the absolute value
of the log-returns jump by more than 5%,

ARV = Average realized variance (defined below),
U = Expected number of times the processes crosses [0.98S0, 1.02S0].

We estimate the values by a Monte Carlo simulation for the six models based
on the average parameters of Table 5. Those parameters do not belong to any
particular set of plain vanilla options, nevertheless the computed characteristics
shown in Table 3 are similar when choosing the parameter sets of a particular
timepoint and issuer. Note that those characteristics are computed under an
equivalent martingale measure and might look very different under the physi-
cally measure.

Model h σ Jlog ARV U

BNS 0.66 0.26 1.32 0.063 1.22
HESJ 0.72 0.27 0.03 0.073 1.47
HES 0.74 0.19 0.00 0.032 1.59

MJD_CIRL 0.83 0.22 0.15 0.068 2.35
NIG_CIRL 0.84 0.24 0.91 0.079 2.47
VG_CIRL 0.86 0.26 0.69 0.096 2.82

Table 3: Some characteristics of the path-behaviour of the various models. The
table is ordered by column h. Each model is simulated M = 200, 000 times
on the time interval [0, 1] using a step-size of δ = 4.0 · 10−5 business years or
equivalently using N = 25, 000 time-steps. We assume S0 = 100 and r = 0 for
all models.

Some of the values can be estimated analytically as well. Define by

p±0.05
(µ,σ)

the probability of a normal random variable with mean µ and standard deviation
σ to be outside the interval (−0.05, 0.05).

The expected number of times the absolute value of the log-returns jump by
more than 5% in the interval [0, 1] can be estimated for the BNS model by

aλ exp
(

−b0.05
|ρ|

)
,

for the HESJ model by
θp±0.05

(log(1+µJ )− 1
2σ

2
J
,σ2

J),
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and for the MJD_CIRL model by(
η + κ−1(y0 − η)(1 − exp(−κ))

)
p±0.05

(γ,σJ ),

where we use Equation (15). Those estimates only capture the jump-part of the
models ignoring the diffusion part.

0.0 0.2 0.4 0.6 0.8 1.0

9
5

1
0

0
1

0
5

1
1

0
1

1
5

Sample Path for BNS and VG_CIRL

Time

S
to

c
k
 P

ri
c
e

BNS

VG_CIRL

Figure 7: Sample path for the BNS and the VG_CIRL model.

Clearly, the probability of hitting the barrier directly influences the price of a
barrier option. The value h is comparatively low for the BNS model and high for
the Lévy models. Indeed in Section 7, we show that the BNS model overvalues
and the Lévy models undervalue the barrier options. But the probability of
hitting the barrier can neither be explained very well by the standard deviation
nor by the expected number of (big) jumps of the processes: the standard
deviations are approximately in the same range for all models. For instance the
BNS model and the VG_CIRL model have the same standard deviation at time
t = 1 but significantly different probabilities of hitting the barrier. The number
of expected jumps are particularly high for the BNS and the Lévy models.

We also compute for the six models the average realized variance ARV:
we discretize the interval [0, 1] by N = 25, 000 time-steps and for a simulated
path we add up the squared log-returns between two successive time-points.
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We repeat this M = 200, 000 times and take the average. See for example
Barndorff-Nielsen and Shephard (2002) for a precise definition of ARV and its
relation to quadratic variation of semimartingales. (We also computed the ARV
based on daily returns, but the result does no differ much). It turns out that
the ARV of the Lévy models NIG_CIRL and VG_CIRL are significantly higher
than the ARV of the BNS model, which indicates that the Lévy models have a
higher path-fluctuation compared to the BNS model. But the ARV of the BNS
model is about twice as large than the ARV of the HES model. The low ARV
of the HES model might be explained by the fact that HES is a continuous
model without any jumps. However, the probability of hitting the barrier is
considerable higher for the HES than for the BNS model and we conclude that
the ARV does not really help to understand the different pricing behaviour of
the various models.

The characteristic U seems to provide some explanation: U measures the
expected number of up-crossings of some interval around the starting point of
the stock price process. U indicates how often a stock price process changes its
direction. The higher U , the higher the fluctuation of the sample random paths
under the risk-neutral measure.

Even though the BNS model jumps quite often (and each jump is directed
downwards increasing the probability of hitting the barrier), we think between
the jumps the BNS behaves too calmly to explain real market data of barrier op-
tions very well. This is probably due to the structure of the Ornstein-Uhlenbeck
process process modelling the stochastic volatility of the BNS model.

As indicated by U , the random paths generated by the Lévy models have
quite a high fluctuations leading to a (too) high probability of hitting the barrier
and therefore underestimating the prices of the barrier options. Lévy models
with stochastic volatility (but without leverage) tend to overvalue down-and-out
barrier options compared to the HES model, see Schoutens et al. (2003).

We think the high fluctuations of the models VG_CIRL, NIG_CIRL and
MJD_CIRL are due to the direct linkage of the CIR process and the log stock
price, i.e. the way a leverage is incorporated into the Lévy models is responsible
of the high fluctuations of the random sample path and the relative low prices
of barrier down-and-out options. Figure 7 show a sample path for both the
BNS and the VG_CIRL model, illustrating typical high fluctuations of the
VG_CIRL model.

The HES model is a continuous model, it does not contain any jumps but
the random sample paths generated by the HES model have moderately higher
fluctuations compared to the HESJ model and measured by U , and the HES
model undervalues the barrier options relative to the HESJ model slightly.

8 Conclusion
We test the performance of six different advanced stock price models for a given
set of time series of market prices of European plain vanilla put and call options
and barrier down-and-out call options for the period between 05/07/2017 and
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21/08/2017 issued by different banks. At each timepoint and for each issuer
we calibrate six models by minimizing the mean-square error between model
and market prices of the plain vanilla options. The models are: the Heston
model, see Heston (1993) and its generalization, see Bates (1996), the BNS
model, see Barndorff-Nielsen and Shephard (2001) and three Lévy models with
stochastic time-change and leverage, see Carr et al. (2003). We apply the Lévy
models MJD_CIRL, NIG_CIRL and VG_CIRL, see Section 4.5. MJD_CIRL
for example corresponds to a Merton jump-diffusion process, subordinated by
the square root process of Cox, Ingersoll, and Ross (1985). As in the BNS model,
a leverage effect is incorporated in the Lévy models. We chose those models,
because they are able to capture both stochastic volatility and the leverage
effect and are flexible enough to model plain vanilla options reasonably well.
They are further mathematically tractable, can be calibrated relatively fast to
real market data and it is straightforward to implement the models in order to
perform a Monte Carlo simulation.

All six models can be fitted almost equally well to market data of plain
vanilla options but computing the prices of the barrier options using the various
calibrated options via a Monte Carlo simulation leads to significantly different
prices for the exotic options. In particular, the BNS model overvalues barrier
options by about 19% on average, the Heston model undervalues those options
slightly and the Bates model reproduces barrier option prices very well.

Jessen and Poulsen (2013) worked with real market data of foreign-exchange
barrier options and similarly concluded that the Heston model slightly under-
values barrier options, but the Bates model performs significantly worse than
the Heston model, which stands in contrast to our results. Future research need
to be done to explain why adding jumps to the Heston model increase the valu-
ation ability of the model when applied to equity data and decrease the model
performance for foreign-exchange barrier options.

Lévy models with stochastic time-change and leverage undervalue the ex-
otic options by about 13% on average. There is barely any difference between
the models NIG_CIRL and VG_CIRL. Compared to the other models, the
model MJD_CIRL is the least robust one. Calibrating the MJD_CIRL model
sometimes lead to unreasonably parameter sets. The results are similar for all
issuers.

The findings that advanced stock prices models can be fitted very well to
plain vanilla market data and the fact that those calibrated models predict very
different prices for exotic options are in line with other studies in literature. In
contrast to other studies, we are able to compare the simulated prices of exotic
options to real market data and conclude that for the particular data set and
period we looked at, the Heston model with jumps best explains barrier option
market prices.

A heuristic analysis suggests that the different degree of fluctuation of the
random paths of the models under the risk-neutral measure are responsible of
producing different prices for the barrier options. Further research need to be
done in this direction.
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Quantile 5% 50% 75% 95% 99% Max
Absolute spread in EUR 0.01 0.01 0.02 0.1 0.2 0.3

Relative spread 0% 1% 3% 12% 107% 192%

Table 4: Relative and absolute spread for plain vanilla options of all banks.
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BNS HES HESJ MJD_
CIRL

NIG_
CIRL

VG_
CIRL

RMSE 0.08
(0.01)

0.09
(0.02)

0.05
(0.01)

0.06
(0.01)

0.09
(0.02)

0.10
(0.02)

κ 2.35
(0.82)

4.85
(3.4)

1.53
(0.93)

0.6
(0.13)

0.61
(0.13)

η 0.04
(0.01)

0.03
(0.01)

0.26
(0.1)

0.37
(0.25)

1.58
(1.06)

λ 0.45
(0.05)

0.45
(0.13)

0.61
(0.21)

0.58
(0.19)

1.12
(0.4)

y0 or
σ2

0

0.01
(0.002)

0.02
(0.004)

0.01
(0.005)

0.07
(0.03)

0.04
(0.03)

0.19
(0.13)

ρ -4.04
(2.94)

-0.78
(0.04)

-0.76
(0.09)

-0.8
(0.36)

-1.24
(0.58)

-0.35
(0.25)

v1 0.79
(1.00)

0.03
(0.02)

1 (0) 9.32
(5.24)

0.16
(0.05)

v2 2.95
(6.41)

-0.45
(0.18)

-0.24
(0.06)

0 (0) 1 (0)

v3 45.7
(20.5)

0.83
(0.68)

0.22
(0.04)

1 (0) 0 (0)

v4 0.27
(0.07)

Table 5: Root mean square error (RMSE) between market and model prices
of European plain vanilla options and average values and standard deviation
(in brackets) of the estimated parameters of the various models. The variables
v1, ..., v4 are defined in Table 6. Some parameters are fixed, which explains the
standard deviation of zero.

BNS HESJ MJD_CIRL NIG_CIRL VG_CIRL
v1 λ θ π α σ
v2 a µJ γ β ν
v3 b σJ σJ δ θ
v4 σ

Table 6: Definition of parameters v1, ..., v4.
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Id WKN Issuer Strike Maturity Knocked-out
1 CE9Q7M Commerzbank 11675 13/12/2017 No
2 UW9JMM UBS 11675 22/12/2017 No
3 HW2FWL UniCredit 11675 12/12/2017 No
4 HU9B3X UniCredit 11690 12/12/2017 No
5 CE9Q7N Commerzbank 11700 13/12/2017 No
6 UW9HBE UBS 11700 22/12/2017 No
7 HW2FWM UniCredit 11700 12/12/2017 No
8 CE9Q7P Commerzbank 11725 13/12/2017 No
9 UW9HTW UBS 11725 22/12/2017 No
10 HW2FWN UniCredit 11725 12/12/2017 No
11 HU9B3Z UniCredit 11740 12/12/2017 No
12 CE9Q7Q Commerzbank 11750 13/12/2017 No
13 HW2FWP UniCredit 11750 12/12/2017 No
14 CE9Q7R Commerzbank 11775 13/12/2017 No
15 UW9LU0 UBS 11775 22/12/2017 No
16 HW2FWQ UniCredit 11775 12/12/2017 No
17 HU9B4B UniCredit 11790 12/12/2017 No
18 CV1MU7 Commerzbank 11800 15/11/2017 No
19 CE9Q7S Commerzbank 11800 13/12/2017 No
20 UW9M60 UBS 11800 22/12/2017 No
21 HW2FWR UniCredit 11800 12/12/2017 No
22 CV1MU8 Commerzbank 11825 15/11/2017 No
23 CE9Q7T Commerzbank 11825 13/12/2017 No
24 UW9F8A UBS 11825 22/12/2017 No
25 HW2FWS UniCredit 11825 12/12/2017 No
26 CE9Q7U Commerzbank 11850 13/12/2017 No
27 UW9L4T UBS 11850 22/12/2017 No
28 CE9Q7V Commerzbank 11875 13/12/2017 No
29 UW9EWA UBS 11875 22/12/2017 No
30 CV1MUB Commerzbank 11900 15/11/2017 No
31 CV1MUC Commerzbank 11925 15/11/2017 No
32 CV1MUE Commerzbank 11975 15/11/2017 11/08/2017
33 CE9SRT Commerzbank 11975 13/12/2017 11/08/2017
34 HW2FWY UniCredit 11975 12/12/2017 11/08/2017
35 CV1MGZ Commerzbank 12000 15/11/2017 10/08/2017
36 CE9SRU Commerzbank 12000 13/12/2017 10/08/2017
37 UW9EWG UBS 12000 22/12/2017 10/08/2017
38 HW2FWZ UniCredit 12000 12/12/2017 10/08/2017

Table 7: Barrier down-and-out options. Barriers and strikes are equal. “WKN”
is a German securities identification code.

58



Part III

Concave Distortion Functions
9 Introduction
Concave distortion functions play a very important role in insurance and finan-
cial mathematics. They are used to define coherent risk measures, as introduced
axiomatically by Artzner et al. (1999). A famous coherent risk measures is the
expected shortfall. Risk measures are for example applied by insurances to com-
pute the premium of an insurance contract or may describe a potential loss from
a capital investment.

In this Part, we introduce concave distortion functions. We provide a list
of desirable properties for families of concave distortion functions and look at
many examples. Some of those example are new to literature.

We also prove a novel representation theorem and show that a family of con-
cave distortion functions satisfying a certain translation equation can be repre-
sented by a distribution function. A famous example is the WANG-transform,
which is defined via the normal distribution and its inverse. It is well known
that a coherent risk measure induced by the WANG-transform reduces to the
standard deviation premium principle for normal distributed random variables.
Our representation theorem helps to interpret general FCDF in a similar spirit.

An application of this theorem can be found in insurance science. Premium
principles in actuarial science are used to determine the premium an insured
has to pay to the insurance company in return for an insurance contract. For
example the premium can be calculated by the expected loss of the insured
object plus a multiple of the standard deviation of the loss. Moment based
premium principles are easy to understand but in general are not monotone
and cannot be used to compare the riskiness of different insurance contracts
with each other. Our representation theorem makes it possible to compare
two insurance risks with each other consistent with a moment based premium
principle by defining an appropriate coherent risk measure.

In particular, we answer the following question: if an insurance company
insures risk X for a certain premium and the premium is computed using a
classical moment based premium principle, what would be an adequate pre-
mium for another risk Z consistent with the premium of X? We are able to
answer this question even if Z as infinite second moments. Consistency be-
tween the premium for X and for Z is measured using performance measures
as axiomatically introduced by Cherny and Madan (2008).

In Section 10 we introduce coherent risk measures. In Section 11 acceptabil-
ity indices (performance measures) are presented. Section 12 defines concave
distortion functions and points out the relation to coherent risk measures. In
Section 13 we prove our main result of this Part: a representation theorem for
a family of concave distortion functions. The proof of the theorem is devoted to
Section 13.1. In Section 13.2 we apply the theorem to insurance science. Section
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14 provides conclusions of this Part.
Concave distortion functions are also applied in Chapter IV to construct

financial markets with frictions.
Before defining concave distortion functions, we recall the definition of co-

herent risk measures and acceptability indices from literature. Throughout this
Part, we fix a probability space (Ω,F ,P) and define by

L∞ := L∞ (Ω,F ,P)

the set of bounded random variables and by

L1 := L1 (Ω,F ,P)

the set of integrable random variables on this probability space. In general for
p ∈ [1,∞) we denote by

Lp := Lp (Ω,F ,P)
the space of all measurable random variables whose absolute value raised to the
p−th power has a finite integral.

10 Coherent Risk Measures
In this section we recall the definition of coherent risk measures from litera-
ture. Coherent risk measure are widely used in finance. For example portfolio
managers may use a risk measure to get an idea of the potential loss from an
investment. Let a random variable X ∈ L∞ describe the future random cash
flow an investor will face at some future date. For example assume some stock
on a certain company costs S0 currency units today and can be modelled by the
nonnegative random variable ST at some future timepoint T . The time-horizon
0 < T < ∞ is usually measured in fractions of a business year and might be
equal to a year, a week, a second or any other positive time-interval depending
on the time-horizon of the investor.

Today, the investor might lend exactly S0 currency units from a bank,
promising the bank to return the money plus interest rates at timepoint T ,
and buy the stock. At timepoint T , she sells the stock and receives ST currency
units. She has to return S0e

rT to the bank, where r are some interest rates. At
time T , she hence faces the future random cash flow ST − S0e

rT . We discount
that cash flow and define

X := e−rTST − S0.

If things go badly for the investor and the stock loses significantly on value,
she makes considerable loses. Hence the need of a good risk management. There
is a famous real-world example, where poor risk management led to a disas-
trous bankruptcy: the hedge fond “Long-Term Capital Management” (LTCM)
founded by John Meriwether in 1994 financed its investments to a great extent
by debts. LTCM went bankruptcy and was closed in 2000, see Jorion (2000).

In the following, we present the formal definition of risk measures. We as-
sume all future random cash flows are already discounted. The random variables
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X and Y represent the value of a financial position, not a loss. We provide sev-
eral applications to insurance science in which case Y ≥ 0 describes some claim
costs or insurance risk and −Y models the loss of the insurance company. We
find this perspective more convenient, as we will later analyse the performance
of the residual cash flow π − Y of an insurance company insuring risk Y ≥ 0 in
return for gaining premium π.

Definition 10.1. (Coherent risk measure). A map ρ : L∞ → R is called a
coherent risk measure if it satisfies the following properties for all X,Y ∈ L∞:

R1: Cash invariance: ρ(X + c) = ρ(X) − c for any c ∈ R.

R2: Monotonicity: X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

R4: Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for 0 ≤ λ ≤ 1.

R5: Positive homogeneity: ρ(λX) = λρ(X) where 0 ≤ λ.

A coherent risk measure assesses the riskiness of a future random cash flow X.
The higher ρ(X), the more risky is an investment in X. We say some future
random cash flow X is acceptable if ρ(X) ≤ 0. By some supervising agency, an
investor might only be allowed to invest in acceptable investments. The value
ρ(X) can be interpreted as the amount of money which need to be added to the
position X to make it acceptable: by R1 it holds

ρ(X + ρ(X)) = 0.

The value ρ(X) could be seen as the minimal amount of capital an investor
must own and deposit in order to be allowed by the supervising agency to enter
into the trade X.

The cash invariance axiom means the risk measures fulfils a translation prop-
erty. Cash can be added or subtracted to a position and the risk of the position
will change exactly by that amount. Monotonicity means that a higher cash flow
is less risky than a smaller one. The convexity axiom encourages diversification,
i.e. a portfolio is less risky then the sum of its components. By the positive
homogeneity property, the risk of a position changes linearly with its size.

For a detailed survey and economic interpretation of static coherent risk
measures, see Artzner et al. (1999), Delbaen (2002) and Föllmer and Schied
(2011, Section 4). The domain of some coherent risk measures can meaningfully
be defined on Lp, p ≥ 1, as well. See Remark 12.6 for important examples of
coherent risk measures which can be defined on L1 and L2.

Example 10.2. Define the worst-case risk measure by

ρW(X) := inf {x ∈ R, X + x ≥ 0 P − a.s.} , X ∈ L∞.

This is the most conservative risk measure. If Ω is finite, it is minus the minimal
value of X. Under ρW a position is only acceptable if it is always nonnegative.
On the other side the map

ρE(X) := −EP[X], X ∈ L∞,
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also defines a coherent risk measure, which could be seen as the less conservative
risk measure. A position is acceptable, if its expectation is nonnegative.

Let us assume a stock cost S0 = 100 currency units today and can be
modelled by a log-normal random variable after one year, i.e. T = 1 and

ST = S0e
r− σ2

2 +σZ ,

where Z is a standard normal variable and σ > 0. Say an investor is only allowed
to invest in acceptable future random cash flows. She would like to know how
much money m she is allowed to borrow from a bank in order to finance the
purchase of the stock. Let

X = e−rTST −m

be the discounted future random cash flow of the investor. It holds

ρW(X) = m,

which is less or equal to zero if and only if m ≤ 0. Under the worst-case risk
measure, the investor is not allowed to borrow a cent from the bank and has to
finance the purchase of the stock completely by her own capital. It holds

ρE(X) = −S0 +m.

Under the risk measure ρE the investor can borrow up to S0 currency units from
the bank and could finance the purchase of the stock completely by debts.

The risk measure the investor has to use depends on the conservativeness of
the supervising agency. In this thesis, all risk measures lay somewhere between
the worst-case risk measure and the risk measure based on the expectation
operator.

Another application of risk measures appears in insurance science:

Example 10.3. By Artzner et al. (1999), a coherent risk measure could be seen
as a premium principle, i.e. can be used to determine the price of an insurance
contract. Let us assume an insurance company sells contracts to people exposed
to risk from some natural disaster, e.g. an earthquake. Let us further assume,
the possible financial loss due to the disaster can be modelled by a nonnegative
random variable X and the insurance receives a total premium of π currency
units for selling the contracts. Using a coherent risk measure ρ, the contracts
are acceptable from the perspective of the insurance, if

ρ(−X + π) ≤ 0,

i.e. if the insurance receives at least a premium greater or equal to ρ(−X).

Coherent risk measures can be represented by the supremum over a set of
probability measures, as the following theorem shows.
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Theorem 10.4. Let ρ : L∞ → R be a coherent risk measure. Then the following
conditions are equivalent:

i) ρ is continuous from above: if Xn ↘ X P−a.s. then ρ(Xn) ↗ ρ(X).

ii) ρ satisfies the Fatou property: for any bounded sequence (Xn)n∈N ⊂
L∞ which converges P−a.s. to X ∈ L∞, the following holds:

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

iii) There is a set of probability measures P such that any P ∈ P is
absolutely continuous with respect to P and

ρ(X) = sup
P∈P

{EP [−X]} .

For the proof see Delbaen (2002) or Föllmer and Schied (2011, Corollary 4.37).

11 Acceptability Index
Similar to the axiomatic approach of describing coherent risk measure, see Sec-
tion 10, Cherny and Madan (2008) introduced an axiomatic approach to charac-
terise maps measuring the performance or the attractiveness of a future random
cash flow and defined an acceptability index as map from the set of bounded
random variables L∞ to the extended half line [0,∞] fulfilling the following ax-
ioms. An acceptability index is used in Section 17.1 to define the “conic finance”
theory, which is closely related to our market model with frictions.
Definition 11.1. A map α : L∞ → [0,∞] is called an acceptability index if it
satisfies the following properties for X,Y ∈ L∞:

A1: Quasi-concavity: If α(X) ≥ γ and α(Y ) ≥ γ, then α(λX + (1 − λ)Y ) ≥ γ
for γ ≥ 0 and 0 ≤ λ ≤ 1.

A2: Monotonicity: If X ≤ Y then α(X) ≤ α(Y ).

A3: Fatou property: If (Xn)n∈N ⊂ L∞ is a bounded sequence of random vari-
ables such that α (Xn) ≥ γ for all n ∈ N and (Xn) converges to X P−a.s.,
then α(X) ≥ γ.

A4: Scale invariance: It holds α(λX) = α(X) where λ > 0.

Quasi-concavity states that a diversified portfolio has a performance level at
least as high as its components. Monotonicity is a basic property: generally
a greater cash flows is preferred over a smaller one. The Fatou property is a
technical axiom, it is a weak form of continuity and needed in order to prove a
certain representation theorem. The scale invariance of performance measures
states that the performance of a cash flow does not depend on its size.

We refer to Cherny and Madan (2008) for a more detailed economic inter-
pretation of the axioms presented here and a discussion of additional properties
an acceptability index can possibly have, e.g. law invariance.
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Example 11.2. For a given coherent risk measure ρ satisfying the Fatou prop-
erty, the coherent Risk-Adjusted Return on Capital (RAROC) is defined by

αRAROC(X) :=


E[X]
ρ(X) , E[X] > 0, ρ(X) > 0
∞ , ρ(X) ≤ 0
0 , E[X] ≤ 0.

For an investor, an investment is more attractive, the higher the expected return,
measured by E[X] and the lower the risk related to X and measured by ρ(X).
Indeed, the greater the expected value of the future random cash flow X and
the smaller its risk, the greater the performance of X measured by αRAROC.

Cherny and Madan showed that any unbounded acceptability index can be
represented by a family of coherent risk measures and proved the following
theorem:

Theorem 11.3. Let P be the set of probability measures absolutely continuous
with respect to P. A map α : L∞ → [0,∞] unbounded above is an acceptability
index if and only if there exists a family of subsets (Dγ)γ≥0 of P such that
Dγ1 ⊂ Dγ2 for 0 ≤ γ1 ≤ γ2 and

α(X) = sup {γ ≥ 0 : ργ(X) ≤ 0} , (18)

where ργ(X) := sup
P∈Dγ

EP [−X], γ ≥ 0 and sup ∅ = 0.

Axiom A3 plays an important part to prove this theorem. (ργ)γ≥0 is a set of
coherent risk measures, see Theorem 10.4. The family of coherent risk measures
is increasing, i.e. for 0 ≤ γ1 ≤ γ2 it follows ργ1(X) ≤ ργ2(X). The economic
interpretation of the map α defined via Equation (18) is the following: the
performance of X is the greatest level γ, such that the risk of X under ργ is
still acceptable.

The domain of an index of acceptability can be defined as Lp if the accept-
ability index is induced via Equation (18) by a family of coherent risk measures,
which have domain Lp.

We use an acceptability index in Section 13.2 in the context of insurance
science and in Section 17.1 where the conic finance theory is presented.

12 Concave Distortions and their Connections
to Risk Measures

In this Section, we define concave distortion functions and provide a connection
to coherent risk measures.

Definition 12.1. A concave distortion function Ψ : [0, 1] → [0, 1] is monotoni-
cally increasing and concave and it holds Ψ(0) = 0 and Ψ(1) = 1.
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Figure 10: The WANG-transform.

Example 12.2. The WANG-transform is defined by

Ψ(u) = Ψγ
WANG(u) = Φ(Φ−1(u) + γ), u ∈ [0, 1], γ ≥ 0, (19)

which involves the standard cumulative normal distribution Φ and its inverse,
see Wang (2000), and is widely used in actuarial science. The WANG-transform
is drawn for different values of γ in Figure 10.

Example 12.3. The ess sup-expectation convex combinations distortion func-
tion jumps at zero and is defined for λ ∈ [0, 1] by

Ψ(u) =

{
0 , u = 0
λ+ (1 − λ)u, u ∈ (0, 1],

see Bannör and Scherer (2014). The risk measure induced by Ψ involves a
convex combination of the essential supremum and the ordinary expectation.
Bannör and Scherer (2014) applied this FCDF to calibrate a non-linear pricing
model to quoted bid-ask prices.

For a concave distortion function Ψ one can define a Choquet integral for a
random variable Y ∈ L∞ by

H(Y ) =
0ˆ

−∞

(Ψ (P [Y > y]) − 1) dy +
∞̂

0

Ψ (P [Y > y]) dy. (20)
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According to Föllmer and Schied (2011, Theorem 4.70) the map

ρΨ(Y ) := H(−Y ) (21)

=
∞̂

0

(Ψ (P [Y < y]) − 1) dy +
0ˆ

−∞

Ψ (P [Y < y]) dy (22)

is a coherent risk measure with domain L∞, see also Kusuoka (2001). We say
the risk measure ρΨ is induced by the distortion function Ψ. Let

FY (x) := P(Y ≤ x)

be the distribution function of Y . For continuous Ψ it holds

ρΨ(Y ) = −
ˆ
R
xd (Ψ(FY (x))) (23)

= −
ˆ
R
xΨ′ (FY (x)) fY (x)dx, (24)

see Föllmer and Schied (2004, Theorem 4.64). The function Ψ(FY (.)) is called
the distorted distribution function of FY with respect to the concave distortion
Ψ: smaller values of Y get higher probabilities and the probabilities of greater
values of Y are reduced. We distort the distribution function of Y . The value
−ρΨ(Y ) can be seen as the expectation of a random variable with distribution
function Ψ(FY (x)). For Equation (24) we assume that the distribution function
FY of Y is differentiable with density fY and the first derivative of Ψ exists.
Remark 12.4. Several authors interpret Y as a loss and defined a coherent risk
measure directly via Equation (20), see Wang (2000, eq. (2)) and Tsanakas
(2004, eq. (3)). If Ψ is continuous it holds

H(Y ) =
1ˆ

0

F−1
Y (y)dΨ̂(y), (25)

where Ψ̂(u) = 1 − Ψ(1 − u) is the dual distortion of Ψ, see Föllmer and Schied
(2011, Theorem 4.70). Acerbi (2002) and Tsukahara (2009, eq. (1.1)) among
others work with the convex dual distortion to define coherent risk measures via
Equation (25).

Example 12.5. The risk-measure based on the expectation operator ρE and the
worst-case risk measure ρW, see Example 10.2, can be represented by concave
distortion functions. It holds

ρΨ ≡ ρE, if Ψ ≡ Id.

By Föllmer and Schied (2011, Remark 4.50) we have

ρΨ ≡ ρW, if Ψ(.) = 1(0,1](.).
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Remark 12.6. If the distortion function Ψ is continuous and differentiable, let

σ(u) := Ψ′(1 − u).

For q ∈ [1,∞], let p ∈ [1,∞] such that 1
q + 1

p = 1. If σ ∈ Lq it follows that the
coherent risk measure ρΨ is finite on the domain Lp. This follows using Hölder’s
inequality, see Pichler (2013). In particular if the derivative Ψ′ is bounded on
[0, 1], the functional ρΨ is well defined on L1. A little calculus shows that

ˆ 1

0

(
∂

∂u
Ψγ

WANG(u)
)2

du = exp(γ2).

Hence the coherent risk measure induced by the WANG-transform, see Equation
(19), is well defined on L2.

12.1 Parametric Families of Concave Distortion Functions
Often, one would like work with a parametric family of risk measures (ργ)γ≥0,
where γ models the view of the risk manager: the greater γ, the more conserva-
tive the risk measure ργ . For example Wang (1995) and Wang (2000) proposed
the proportional hazard transform and the WANG-transform as distortion func-
tions for insurance premium calculation of an insurance risk X. The premium is
computed according to Equation (21). Both distortions depend on a single pa-
rameter γ: the premium of a risk is thus a function of γ and varies continuously
between the smallest and greatest reasonably premium: the expected value and
maximal value of X. The insurance company may choose γ depending on many
external circumstances and the risk-attitude of the company. Wang (2000) pro-
posed that possible changes in court rulings or in the interest rate yield curve,
moral hazards by insurance buyers and competition with other insurance com-
panies, should be taken into consideration when choosing the parameter γ.

Another use of a family of risk measures is discussed in Cherny and Madan
(2008), who proved that an acceptability index, which measures the performance
of a future random cash flow, can be represented by an increasing family of
coherent risk measures, compare with Section 17.1.

If the parametric family of risk measures is induced by distortion functions,
we need to work with a family of concave distortion functions, which is defined
as follows:

Definition 12.7. A family of concave distortion functions (FCDF) (Ψγ)γ≥0 is
a set of functions

Ψγ : [0, 1] → [0, 1], γ ≥ 0,
that are monotonically increasing and concave for all γ ≥ 0 and for which

Ψγ(0) = 0 and Ψγ(1) = 1.

Moreover the family is monotonically increasing and continuous at γ, i.e. it
holds for all u ∈ [0, 1] that

Ψγ1(u) ≤ Ψγ2(u), γ1 ≤ γ2,
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and the map γ 7→ Ψγ(u) is continuous for all u ∈ [0, 1].

We note that the map u 7→ Ψγ(u) is continuous on (0, 1] for all γ ≥ 0 but
might jump at zero. Let us additionally assume the following conditions:

[E] It holds Ψ0(u) = u, for u ∈ [0, 1].

[W] It holds lim
γ→∞

Ψγ(u) = 1, for u ∈ (0, 1].

[T] It holds Ψγ2 (Ψγ1 (u)) = Ψγ1+γ2 (u), for γ1, γ2 ≥ 0 and u ∈ [0, 1].

Define Ψ′

γ(u) = ∂
∂uΨγ(u), if the partial derivative exists.

[L] It holds lim
u↘0

Ψ′

γ(u) = ∞, γ > 0.

[G] It holds lim
u↗1

Ψ′

γ(u) = 0, γ > 0.

[A] It holds Ψξγ
( 1

2 + ξp
)

= 1
2 + ξp + 1

2ξγ + o (|ξp| + |ξγ |) , ξp ∈ (0, 1), ξγ > 0.

The interpretation of Definition 12.7 is the following: the greater γ, the greater
the distortion and the more conservative the risk measure induced by Ψγ . Con-
ditions [E] and [W] are quite natural: it is usually desirable that for γ = 0
no distortion occurs, the risk measure induced by Ψ0 should be equal to the
negative expectation operator.

For γ → ∞ the risk measure induced by Ψγ should converge to the worst-
case risk measure, i.e. Ψγ(u) should converge to 1 for u > 0, which is expressed
in condition [W].

Condition [T] means distorting the probability u first at level γ1 and then
at level γ2 is the same as distorting the probability once at level γ1 + γ2. This
condition is called translation equation in functional equation theory, see Aczél
(1966, Section 6.1.1.). Its use becomes clear in Section 13, where we prove a
representation theorem for FCDF.

Assumption [L] and [G] have a purely financial background. Assumption
[L] ensures loss aversion. Large losses should be overstated up to infinity. An
example best explains this point.

Example 12.8. Let L < −1 and define a random variable X taking the large
loss L with probability

pL := − 1
L

and the value L
L+1 with probability 1 − pL. The expectation of X is zero. For

a distortion function Ψ, it holds

ρΨ(X) = −LΨ(pL) − L

L+ 1
(1 − Ψ(pL))

= −LpL
Ψ(pL) − Ψ(0)

pL
− L

L+ 1
(1 − Ψ(pL))

≤ Ψ′(0).

68



If Ψ′(0) was finite, there would exist an upper bound of the risk ofX independent
of the maximum loss L.

Similarly assumptions [G] ensures being enticed by large gains, see Wang
(1996), Cherny and Madan (2008) and Balbás et al. (2009) for details. From a
purley financial point of view, there are some other properties a FCDF should
satisfy, e.g. the map u 7→ Ψγ(u) should be strictly increasing, such distortion
functions are called complete by Balbás et al. (2009).

Assumption [A] describes a linear approximation of the FCDF around (u, γ) =( 1
2 , 0
)

by the total differential and holds if the function (u, γ) 7→ Ψγ(u) is partial
differentiable and all partial derivatives at

( 1
2 , 0
)

are continuous with

∂

∂u
Ψγ(u)

∣∣∣∣
(u,γ)=( 1

2 ,0)
= 1 and ∂

∂γ
Ψγ(u)

∣∣∣∣
(u,γ)=( 1

2 ,0)
= 1

2
. (26)

This approximation is used in Section 18 in a discrete time model to prove
convergence of various plain vanilla and exotic options if the number of trading
periods approaches infinity.

Let us provide some FCDF often used in literature.

Example 12.9. The FCDF corresponding to the expected shortfall at level
e−γ ∈ (0, 1] can be defined by

Ψγ
ExpShortfall(u) = min(ueγ , 1), u ∈ (0, 1), γ ≥ 0,

see e.g. Föllmer and Schied (2011, Example 4.71) and is drawn for γ = 1 as Ψ1
in Figure 12. For u close enough to 1

2 and γ close enough to zero, it holds

Ψγ
ExpShortfall(u) = ueγ .

This distortion function obviously satisfies assumptions [E, W, T, G, A] but
does not satisfy assumption [L].

Let Φ be the cumulative standard normal distribution function and φ the
normal density. The WANG-transform

Ψγ
WANG(u) = Φ

(
Φ−1(u) + 1

2φ(0)
γ

)
, u ∈ (0, 1), γ ≥ 0,

was introduced by Wang (2000) and fulfils [E-A]. The WANG-transform is
widely used in actuarial science and was originally defined without the scal-
ing factor 1

2φ(0) . We need to rescale γ of the original WANG-transform, to
satisfy assumption [A].

Cherny and Madan (2008) introduced four FCDF: the MAXVAR and MIN-
VAR distortions, which are reparametrizations of the power distortion and its
dual, the proportional hazards distortion, see Wang (1995, 1996), and the MIN-
MAXVAR and MAXMINVAR, which are compositions of the former two.
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[E] [W] [T] [L] [G] [A]
Expected Shortfall y y y n y y
WANG-transform y y y y y y

MINVAR y y n∗ n y y
MAXVAR y y n∗ y n y

MINMAXVAR y y n y y y
MAXMINVAR y y n y y y

Laplace y y y n n n

Table 8: Properties of several FCDF.
*) Examples 13.7 and 13.8 show that there exist a reparametrization of the
FCDF satisfying assumption [T].

Example 12.10. The first two FCDF are defined by

Ψγ
MINVAR(u) = 1 − (1 − u)1+γ , u ∈ (0, 1), γ ≥ 0,

and

Ψγ
MAXVAR(u) = u

1
1+γ , u ∈ (0, 1), γ ≥ 0,

and satisfy assumption [A] after rescaling, i.e. replacing γ by − γ

log( 1
2 ) .

Example 12.11. The FCDF MINMAXVAR and MAXMINVAR are defined
respectively by

Ψγ
MINMAXVAR(u) = 1 −

(
1 − u

1
1+γ

)1+γ
, u ∈ (0, 1), γ ≥ 0,

and
Ψγ

MAXMINVAR(u) =
(
1 − (1 − u)1+γ) 1

1+γ , u ∈ (0, 1), γ ≥ 0.

Both FCDF satisfy assumption [A], replacing γ by − γ

2 log( 1
2 ) which again corre-

sponds to a simple rescaling of the FCDF.

Table 8 summarizes the properties of the presented FCDF, compare with a
similar table in Madan and Schoutens (2016a, Table 4.1). For most FCDF it
is not so obvious to see whether Assumption [T] is satisfied or not. That point
is discussed in more detail in Section 13. In particular Examples 13.2 - 13.5
provide some more FCDF with a special focus on Assumption [T].

12.1.1 FCDF induced by Distribution Functions

In this thesis, generalizations of the WANG-transform play a special role in
Section 13. The WANG-transform, see Equation (19) has been modified by
Wang (2002) to a two factor model replacing the normal distribution in Equa-
tion (19) by Student’s t-distribution but leaving the inverse normal distribution
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inside the brackets untouched. Kijima and Muromachi (2006) introduced a new
transform involving a non-central t-distribution and the inverse of a standard
t-distribution. The classical WANG-transform has been extended to the multi-
dimensional case by Kijima (2006). Kijima and Muromachi (2008) generalized
the WANG-transform and constructed a transformation using the normal dis-
tribution and the inverse of the cumulative distribution function of the quotient
of a normal distributed random variable and some independent positive random
variable Y . For Y = 1 the classical WANG-transform is obtained. Tsukahara
(2009) generalized the WANG-transform by replacing the normal distribution
function Φ in Equation (19) by a general distribution function F and its in-
verse by F−1. Tsukahara called such a distribution function a one-parameter
distortion group. We say a FCDF (Ψγ) is induced by the distribution function
F if

Ψγ(u) = F
(
F−1(u) + γ

)
, u ∈ [0, 1], γ ≥ 0, (27)

where F−1 is understood to be the generalized inverse of F and we define
F (−∞) = 0 and F (∞) = 1.
Remark 12.12. The function Ψγ defined by Equation (27) is continuous in the
variable u if F and F−1 are continuous. It is easy to see that the map u 7→ Ψγ(u)
is concave for all γ ≥ 0, if the corresponding density f = F ′ has support on
a possibly unbounded interval U , i.e. f(x) > 0 for x ∈ U , and is log-concave,
compare with Tsukahara (2009, p. 697). The function f is called log-concave if
log(f) is concave, see Bagnoli and Bergstrom (2005).

A FCDF induced by the Laplace distribution has been introduced by Guil-
laume, Junike, Leoni and Schoutens (2018):

Example 12.13. A random variable with mean zero and variance one which
is Laplace distributed, has the following distribution function

F (x) =

{
1
2e

√
2x , x < 0

1 − 1
2e

−
√

2x , x ≥ 0.

It induces via Equation (27) the Laplace distortion

Ψγ
Laplace(u) =


ue

√
2γ , u ∈

[
0, 1

2e
−

√
2γ
)

1 − e−
√

2γ

4u , u ∈
[

1
2e

−
√

2γ , 1
2

)
ue−

√
2γ + 1 − e−

√
2γ , u ∈

[ 1
2 , 1
]
,

which is linear for u < 1
2e

−
√

2γ and for u ≥ 1
2 . In between it behaves like a

reciprocal function and it is clearly concave. Applying the Laplace distortion to a
uniform distribution function, which appears e.g. via a Monte Carlo simulation,
leads to a new interesting interpretation of the parameter γ. In Figure 11 the
density of a Laplace distorted uniform distribution is drawn. It is high and
constant at the beginning, then it drops sharply and is quite low and constant
at the right hand side of the median. So if we only wish to distort the q−quantile
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of a uniform distribution strongly, we can simply choose γ = − 1√
2 log(2q). On

the other hand, if real data is given and we calculate implicitly the parameter
γ, the value 1

2e
−

√
2γ can be interpreted as the quantile that is the most strongly

distorted.

−1.0 −0.5 0.0 0.5 1.0

0
.5

1
.0

1
.5

2
.0

Density of Laplace Distorted Uniform Distribution

x

uniform density
distorted uniform density

Figure 11: Density of Laplace distorted uniform distribution on [−1, 1] at dis-
tortion level γ = 1.

13 A Representation Theorem
We are able to prove that for any FCDF (Ψγ), which satisfies conditions [E],
[W] and [T] of Definition 12.7, there exists a distribution function G such that

Ψγ(u) = G(G−1(u) + γ), u ∈ (0, 1), γ ≥ 0. (28)

Conversely, if a FCDF is represented as in Equation (28), it satisfies conditions
[E], [W] and [T].

Based on results from functional equation theory, see Aczél (1966, Section
6.1.), Tsukahara (2009) obtained a similar result, under the additional assump-
tions that the FCDF is continuous in the variable u and strictly increasing in
the variable γ and that G is strictly increasing. While we interpret a random
variable X as a net worth, Tsukahara interprets X as a loss, see also Remark
12.4. Therefore Tsukahara works with the convex dual 1 − Ψ(1 − u) of the
concave distortion function Ψ.
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Examples 13.2 - 13.5 provides various FCDF, which are not continuous at
u = 0 or are not strictly increasing in γ but can be represented by a distribution
function. Some of those FCDF are applied in Section 13.2 to actuarial science
and we develop a new FCDF using the gamma distribution, which includes the
expected shortfall and the WANG-transform as special cases. In the following
theorem, we present our main result of this Section: a relationship between
distribution functions and FCDF. An application to insurance science can be
found in Section 13.2.

Theorem 13.1. Let (Ψγ) be a FCDF. Let u0 ∈ (0, 1). The following two
statements are equivalent.

i) The FCDF (Ψγ) satisfies conditions [E], [W] and [T].

ii) There exists a unique distribution function G, such that G (0) = u0 and

Ψγ(u) = G(G−1(u) + γ), γ ≥ 0, u ∈ (0, 1). (29)

Proof. The proof is devoted to Section 13.1.

Necessary conditions for a function u 7→ Ψγ(u), defined via Equation (29), to be
concave are given in Remark 12.12. The constant u0 mentioned in the theorem
can be chosen arbitrarily: if G induces Ψγ then also the shifted distribution
G̃(x) := G(x+µ) for any µ ∈ R induces Ψγ . Hence we could reformulate Theo-
rem 13.1 and say that G is unique up to location translation. The distribution
function G can be identified by

G(x) =

{
Ψx (u0) , x ≥ 0
Ψ−x (u0) , x < 0,

(30)

where Ψγ is the generalized inverse of the function u 7→ Ψγ(u), in particular for
γ ≥ 0

Ψγ : [0, 1] → [0, 1]
p 7→ inf {u ∈ [0, 1] : Ψγ(u) ≥ p} .

We provide four examples of FCDF satisfying conditions [E], [W] and [T].
The four distortions are also shown in Figure 12.
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Figure 12: Distortion Functions from Examples 13.2 - 13.5. We set γ = 1. Ψ2
denotes the generalized inverse of Ψ2. The jump-size of Ψ2 at zero is defined by
p̃γ and the point, where Ψ2 first reaches one, is defined by ũγ .

Example 13.2. The following FCDF is not continuous at u = 0. Let

Ψγ
1(u) :=

{
0 , u = 0
1 − (1 − u)e−γ , u > 0,

The FCDF (Ψγ
1) is called “ess sup-expectation convex combination” by Bannör

and Scherer (2014) because the Choquet integral induced by (Ψγ
1) involves a

convex combination of the essential supremum and the ordinary expectation.
Bannör and Scherer (2014) applied this FCDF to calibrate a non-linear pricing
model to quoted bid-ask prices. (Ψγ

1)γ≥0 is induced by the exponential distri-
bution function

G1(x) =

{
1 − e−x , x > 0
0 , otherwise.

Example 13.3. Let

Ψγ
2(u) :=

{
0 , u = 0
min

(
u+ γ

λ , 1
)

, u > 0.
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This FCDF is induced by the uniform distribution function on
[
−λ

2 ,
λ
2
]

for any
λ > 0.

Example 13.4. The FCDF corresponding to the expected shortfall at level
e−γ ∈ (0, 1], see e.g. Föllmer and Schied (2011, Example 4.71), can be defined
by

Ψγ
3(u) := min(ueγ , 1).

This FCDF is induced by the distribution G3(x) = min(ex, 1), x ∈ R and is
increasing in the variable γ but not strictly increasing.

Let X be exponential distributed. It holds

ρΨγ
3
(−X) = E[X]eγ ,

i.e. the expected shortfall reduces to the expected value premium principle when
applied to exponential risks.

The next example is applied in Section 13.2 to insurance science.

Example 13.5. Let
Ψγ

4(u) := G̃(G̃−1(u) + γ),

The FCDF (Ψγ
4) is similar to the WANG-transform but replacing the normal

distribution function by the function

G̃(x) = 1 − Γα,β
(

−
√
α

β
x

)
, x < 0,

where Γα,β is the gamma distribution with shape α and rate β. (Ψγ
4) generalizes

the expected shortfall: for α = 1 and β = 1, (Ψγ
3) and (Ψγ

4) are identical. Setting
β :=

√
α, (Ψγ

4) converges to the WANG-transform for large α. We will see in
Example 13.13, that the coherent risk measure induced by (Ψγ

4), reduces to
the standard deviation premium principle when applied to gamma distributed
random variables.

Cherny and Madan (2008) proposed some FCDF, called MINVAR, MAX-
VAR, MINMAXVAR and MAXMINVAR, see Example 12.9, which do not sat-
isfy condition [T]. But as we shall see, sometimes it is possible find a reparametriza-
tion, by rescaling the parameter γ, such that the reparameterized FCDF does
satisfy condition [T] and hence can be represented by a distribution func-
tion. In the following definition we state more precisely what we mean by a
reparametrization.

Definition 13.6. We say that the FCDF
(
Ψ̃γ
)
γ≥0 is a reparametrization of the

FCDF (Ψγ)γ≥0 if there exist bijective function

t : [0,∞) → [0,∞)

such that t(0) = 0 and

Ψt(γ)(u) = Ψ̃γ(u), u ∈ [0, 1], γ ≥ 0.
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Example 13.7. The MAXVAR FCDF is defined by Ψγ
MAXVAR(u) = u

1
1+γ and

there is a slight modification which indeed satisfies condition [T], in particular
let

Ψ̃γ
MAXVAR(u) := uexp(−γ),

which is a reparametrization of Ψγ
MAXVAR. By Theorem 13.1, the FCDF

(
Ψ̃γ

MAXVAR
)

is induced by the distribution function

FMAXVAR(x) = e− exp(−x), x ∈ R,

which is the Gumbel distribution with location zero and scale one. Let X be a
Gumbel distributed random variable with location µ ∈ R and scale σ > 0. X
has distribution function

FX(x) = e− exp(− x−µ
σ ), x ∈ R.

It holds
ρΨ̃γ

MAXVAR
(X) = −E[X] + σγ

i.e. the coherent risk measures induced by the MAXVAR FCDF and applied to
a Gumbel distributed random variable X can be expressed by a linear mapping
of the expectation of X.

Example 13.8. The MINVAR FCDF is defined by Ψγ
MINVAR(u) = 1−(1−u)γ+1

and can be represented after a reparametrization by 1 −G(−x), where G is the
Gumbel distribution function with location zero and scale one.

We have seen in Example 13.7 that the MAXVAR and MINVAR FCDF
defined by Cherny and Madan (2008) do not satisfy the condition [T] but there
exist a reparametrization satisfying condition [T]. The following proposition is
useful to check whether a FCDF can be reparameterized into a FCDF satisfying
condition [T].

Proposition 13.9. Let (Ψγ) be a FCDF. If there exist a reparametrization(
Ψ̃γ
)

which satisfies condition [T], then it holds

Ψγ1 (Ψγ2(u)) = Ψγ2 (Ψγ1(u)) , γ1, γ2 ≥ 0, u ∈ [0, 1], (31)

i.e. the original FCDF is permutable.

Proof. Let γ1, γ2 ≥ 0 and u0 ∈ [0, 1]. Then it follows

Ψγ1 (Ψγ2(u0)) = Ψ̃t(γ1)
(

Ψ̃t(γ2)(u0)
)

= Ψ̃t(γ1)+t(γ2)(u0) = Ψγ2 (Ψγ1(u0)) ,

for a suitable function t.
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Simple numerical examples and Proposition 13.9 show that the following
FCDF

Ψγ
MINMAXVAR(u) = 1 −

(
1 − u

1
1+γ

)1+γ
,

Ψγ
MAXMINVAR(u) =

(
1 − (1 − u)γ+1) 1

γ+1 ,

cannot be reparameterized into a FCDF satisfying condition [T], i.e. cannot be
represented by a distribution function.

13.1 Proof of Theorem 13.1.
The following lemma shows that a FCDF can only be represented by a distri-
bution function G with a certain structure, e.g. G is continuous on the whole
real line and strictly increasing on its support until it hits its upper limit 1.

Lemma 13.10. Let u0 ∈ (0, 1). Let G : R → [0, 1] be a distribution function
such that G(0) = u0. Define G(−∞) = 0. Let G−1 be the generalized inverse of
G, for instance

G−1(u) := inf {x ∈ R : G(x) ≥ u} .

Define
x0 := inf {x ∈ R, G(x) > 0}

and
x1 := G−1(1).

It then holds x0 < x1. Let (Ψγ) be a FCDF. If

Ψγ(u) = G(G−1(u) + γ), u ∈ (0, 1), γ ≥ 0,

then it holds G(x0) = 0 and G is continuous on R and strictly increasing on
(x0, x1). We further have

G−1(G(x)) = x, x ∈ (x0, x1) (32)

and
G(G−1(u)) = u, u ∈ (0, 1). (33)

Proof. We trivially have x0 ≤ 0 < x1. Assume 0 < p0 := G(x0). Then p0 ≤
u0 < 1 and G−1(p) = x0 for p ∈ (0, p0]. Hence the map u 7→ G(G−1(u)) is
constant and equal to p0 on (0, p0), which is a contraction as the map u 7→ Ψ0(u)
is concave and increasing and Ψ0(1) = 1. Thus it holds G(x0) = 0.

As G is a distribution function, G is right-continuous and increasing, i.e. for
all x ∈ R it holds

G(x+) := lim
ε↓0

G(x+ ε) = G(x).

Assume there is a x̄ ∈ (x0, x1] such that

ū := G(x̄−) := lim
ε↑0

G(x̄+ ε) < G(x̄)
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i.e. G jumps at x̄. Then G(G−1(ū−)) < G(x̄) ≤ G(G−1(ū+)), which is a
contradiction because the map u 7→ Ψ0(u) is continuous on (0, 1]. We conclude
that G is continuous on R.

Now we show, that G is strictly increasing on (x0, x1). Assume there are
x0 < x̃1, x̃2 < x1 such that x̃1 < x̃2 and G(x̃1) = G(x̃2) =: ũ. Then it follows
0 < ũ < 1 and there exists γ > 0 such that

G(G−1(ũ−) + γ) ≤ G(x̃1 + γ) < G(x̃2 + γ) ≤ G(G−1(ũ+) + γ),

which is again a contraction. The second assertion, expressed by Equations
(32) and (33), follows immediately, because G̃ : (x0, x1) → (0, 1), x 7→ G(x), is
bijective.

Prove of Theorem 13.1. We show the direction i)⇒ ii). Let u0 ∈ (0, 1)
and define G : R → [0, 1] by Equation (30).

First step: Show that p 7→ Ψγ(p) is continuous.
By Definition 12.7, for a fixed γ ≥ 0, the function u 7→ Ψγ(u) is mono-

tonically increasing and concave and it holds Ψγ(0) = 0 and Ψγ(1) = 1. This
implies a strong structure on Ψγ : There exists a constant ũγ ∈ [0, 1], namely

ũγ = inf {u : Ψγ(u) = 1} , (34)

such that u 7→ Ψγ(u) is strictly increasing and continuous on (0, ũγ ] and constant
on (ũγ , 1]. At zero, u 7→ Ψγ(u) might jump. Let p̃γ := lim

ε↓0
Ψγ(ε) be the jump-

size at u = 0. For a particular distortion function, ũγ and p̃γ are visualized in
Figure 12. By definition of p 7→ Ψγ(p), it holds for 0 ≤ p ≤ p̃γ

Ψγ(p) = inf {u ∈ [0, 1] : Ψγ(u) ≥ p} = inf {u ∈ (0, 1]} = 0. (35)

Continuity of p 7→ Ψγ(p) follows immediately: define

Θγ(u) :=

{
p̃γ , u = 0
Ψγ(u) , u > 0.

Then u 7→ Θγ(u) is continuous and bijective as a function from [0, ũγ ] to [p̃γ , 1]
and hence its inverse Θγ is also continuous. We further have Ψγ(p) = Θγ(p) for
p ∈ [p̃γ , 1], which shows continuity of p 7→ Ψγ(p).

Second step: show that γ 7→ Ψγ(u0) is decreasing and continuous, hence G
is a distribution function.

While γ 7→ Ψγ(u0) is increasing and continuous in the variable γ by defini-
tion, it is easy to see that its generalized inverse is decreasing in the variable
γ. The function γ 7→ Ψγ(u0) is continuous, which can be seen by the following
auxiliary result:

If γ2 ≥ γ1 ≥ 0 and Ψγ2−γ1(u0) < 1 and u0 > p̃γ1 , it follows

Ψγ2−γ1(u0) = Ψγ2−γ1
(

Ψγ1
(

Ψγ1 (u0)
))

= Ψγ2
(

Ψγ1 (u0)
)
.
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Applying Ψγ2 on both sides, yields

Ψγ1(u0) = Ψγ2 (Ψγ2−γ1(u0)
)
. (36)

Let γ0 := inf {γ ≥ 0 : p̃γ ≥ u0}, where inf ∅ = ∞. γ0 is the smallest number,
such that the jump-size of Ψγ0 at zero is greater or equal to u0. The map
γ 7→ Ψγ(u0) is identical to zero on [γ0,∞), compare with Equation (35). It
remains to show continuity from below at γ ∈ (0, γ0] and continuity from above
at γ ∈ (0, γ0). Let 0 < γ ≤ γ0 and (γn)n∈N be a positive sequence converging
from below to γ. Without loss of generality, we assume γn < γ for all n. For
n large enough, it holds Ψγ−γn(u0) < 1 because Ψγ is continuous at γ and
Ψ0(u0) = u0 < 1. We have u0 > p̃γn

because γn < γ0 and by Equation (36), it
holds

Ψγn(u0) = Ψγ (Ψγ−γn(u0)
)

→ Ψγ(u0), n → ∞,

where we used that p 7→ Ψγ (p) is continuous on [0, 1]. If γ < γ0 and (γn)
is a sequence converging from above to γ, let ε > 0 such that Ψεγ(u0) < 1
and choose n large enough so that (1 + ε)γ − γn ≥ 0 and γn < γ0. It follows
Ψ(1+ε)γ−γn(u0) < 1 and using Equation (36) twice and continuity of p 7→ Ψγ (p),
shows continuity from above.

Thus G is monotonically increasing and continuous. Continuity at zero can
be shown using condition [E]: it holds G(0) = Ψ0 (u0) = u0. By condition [W] it
follows lim

x→∞
G(x) = 1 and lim

x→−∞
G(x) = 0. G is thereby a distribution function.

Third step: show that Equation (29) holds.
We distinguish three cases and use that (Ψγ)γ≥0 satisfies condition [T]. Let

γ ≥ 0 and u ∈ (0, 1). As G is continuous, it is a surjective function from R to
(0, 1) and there exists x ∈ R such that G(x) = u and G−1(u) = x. If x ≥ 0, it
follows

G(x+ γ) = Ψx+γ (u0)
= Ψγ (Ψx (u0))
= Ψγ(G(x)).

If x < 0, it holds
Ψ−x(u0) = G(x) > 0

and therefore u0 > p̃−x. If x < 0 and x+ γ ≥ 0, it follows

G(x+ γ) = Ψx+γ (u0)

= Ψx+γ
(

Ψ−x
(

Ψ−x (u0)
))

= Ψγ(G(x)).

If x < 0 and x+ γ < 0 we have

1 > u0 = Ψ−x
(

Ψ−x(u0)
)

= Ψ−γ−x
(

Ψγ
(

Ψ−x (u0)
))
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and thereby
Ψγ
(

Ψ−x (u0)
)
< ũ−γ−x,

compare with Equation (34). We further have

Ψγ
(

Ψ−x (u0)
)
> 0

as
Ψ−x (u0) = G(x) = u > 0.

Because the function
Ψ−γ−x : (0, ũγ ] → (p̃γ , 1]

is bijective, it follows

G(x+ γ) = Ψ−x−γ (u0)

= Ψ−x−γ (Ψ−γ−x
(

Ψγ
(

Ψ−x (u0)
)))

= Ψγ(G(x)).

Fourth step: Show the uniqueness of G.
Let assume there is another distribution function F such that F (0) = u0

and
F (F−1(u) + γ) = Ψγ(u), u ∈ (0, 1), γ ≥ 0.

For x ≥ 0 it follows by Lemma 13.10,

F (x) = F (F−1(u0) + x) = Ψx(u0) = G(x).

Let x0 := inf {x, F (x) > 0}. For x0 < x < 0, it follows 0 < F (x) < 1 and it
holds

Ψ−x (F (x)) = F (F−1(F (x)) − x) = F (0) = u0

and hence
F (x) = Ψ−x(u0) = G(x).

If −∞ < x0, we further have

p̃−x0 = lim
ε↓0

F (F−1(ε) − x0) = F (0) = u0

and therefore G(x0) = Ψ−x0(u0) = 0 = F (x0). Hence it holds G(x) = F (x) for
all x ∈ R.

Now let us show the other direction ii)⇒ i). We use lemma 13.10. Let
u0 ∈ (0, 1). If there is a distribution function G such that G(0) = u0 and
Equation (29) holds, it follows for any u ∈ (0, 1]

lim
γ→∞

Ψγ(u) = lim
γ→∞

G(G−1(u) + γ) = 1,

i.e. (Ψγ) satisfies condition [W]. We further have

Ψ0(u) = G(G−1(u)) = u, u ∈ (0, 1),
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which shows that the FCDF satisfies condition [E]. Now let γ1, γ2 ≥ 0 and
u ∈ (0, 1). Assume Ψγ1(u) < 1, then it holds

Ψγ2 (Ψγ1 (u)) = G(G−1 [G(G−1(u) + γ1)
]

+ γ2)
= G(G−1(u) + γ1 + γ2)
= Ψγ1+γ2 (u) .

The case Ψγ1(u) = 1 is trivial. Thus (Ψγ) satisfies condition [T].

13.2 Application: Coherent Risk Measures and Moment
Based Premium Principles

In Section 10 we introduced a coherent risk measure ρ as a map from set of
bounded random variables to the real numbers describing the riskiness of future
random cash flows. In insurance science we are usually dealing with nonnegative
random variables describing for example the possible financial loss due to a
natural disaster. In an insurance context, we call a nonnegative random variable
X insurance risk or just risk and the value ρ(−X) a premium, see also Example
10.3.

It is possible to apply our representation result Theorem 13.1 to compare
different insurance risks with each other. Let us assume an insurance company
is insuring a risk, which can be described by a nonnegative random variable X.
The amount of money charged by the insurer to the insured for the coverage
of the loss due to the risk X, is called the risk-adjusted premium, excluding
acquisition or internal expenses. There are several method for assigning a risk-
adjusted premium π to the risk X. The premium π could be defined via a
coherent risk measure ρ by π(X) = ρ(−X). But many premium principles used
in practice are equal to the expected value of the risk plus some security loading,
so called moment based premium principles:

the Expected Value Premium is defind by E[X] + γE[X],
the Standard Deviation Premium is defind by E[X] + γ

√
Var(X),

and the Variance Premium is defind by E[X] + γVar(X),

where γ ≥ 0, see Straub (1988), Daykin et al. (1994) and Rolski et al. (2009).
The moment based premium principles are not coherent, the standard deviation
premium principle for example is not monotone, i.e. two different risks cannot
really be compared with each other3. But for a particular random variable X,
it is possible to construct a FCDF (Ψγ

X), such that for a fixed ξ > 0 it holds

ρΨγ
X

(−X) = E[X] + γξ, γ ≥ 0.

3For example let X take the values 10 or 90, each with probability 1
2 . Clearly, X is less

risky than the constant Z = 100. But the mean plus standard deviation of X is about 106.
The standard deviation premium of Z is just 100.
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The value ρΨγ
X

(−X) is equal to a particular moment based premium of X for
all γ ≥ 0 if

ξ ∈ {E[X],
√

Var(X),Var(X)}.
What are the benefits? An insurance which mainly insures a risk X and uses
a moment based premium principle to assign a premium to X, might wish to
compare risk X to another risk Z, which can be archived by comparing the
values ρΨγ

X
(−X) and ρΨγ

X
(−Z) with each other.

On the one hand, the moment based premium principles are not coherent,
they are arguably not very well suited to compare different risks with each other.
They may even be infinite, e.g. if the second moments of Z do not exist.

On the other hand, moment based premium principles are easy to understand
and explain to policyholders. That is why the insurance may use a moment
based premium principle in the first place, to compute the premium of the risk
X.

Note that already Wang (2000) observed, that the WANG-transform leads
to the standard deviation premium principle, if X is normal distributed. Our
representation result for FCDF makes a straightforward computation of Ψγ

X

possible, in particular for nonnegative and skewed random variables X.

13.2.1 Construction of a Coherent Risk Measure Reproducing a
Moment-Based Premium Principle

In this section we construct a coherent risk measure, based on a concave distor-
tion function and depending on a risk X, such that the premium principle of
this risk measure reduces to the expected value, the standard deviation or the
variance premium principle for risk X. Let an integrable, nonnegative random
variable X on some probability space (Ω,F ,P) be given. We make the following
assumptions on the risk X:

Assumption 1. The density fX of X is continuous with support on (0,∞).

Assumption 2. The density fX = F
′

X is log-concave

Assumption 3. For the density it holds: lim
x→∞

fX (x−γ)
fX (x) < ∞ for all γ > 0.

Those assumptions are made to keep the notation simple and could be relaxed.
See Remark 12.12 for a definition of log-concavity. For example the densities of
the normal distribution and the gamma, the beta and the Weibull distribution,
respectively with shape parameter α ≥ 1, are log-concave, see Bagnoli and
Bergstrom (2005). Assumption 3 is used to show that a coherent risk measure
induced by the distribution function of X is well defined on the whole space
of integrable random variables L1. In particular the gamma and the Weibull
distributions satisfy assumptions 1 − 3, both distributions are frequently used
in insurance science to model insurance risks.

Proposition 13.11. Let X satisfy Assumptions 1 − 3. Let ξ > 0. Let

G(x) := 1 − FX(−xξ), x ∈ R.
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The set of functions

Ψγ
X(u) := G(G−1(u) + γ), γ ≥ 0, u ∈ (0, 1), (37)

define a FCDF and it holds

ρΨγ
X

(−X) = E[X] + γξ, γ ≥ 0, (38)

where ρΨγ
X

is a coherent risk measure with domain L1 induced by the concave
distortion Ψγ

X , see Equation (21).

Remark 13.12. The value ρΨγ
X

(−X) is then equal to the expected value pre-
mium, the standard deviation premium or the variance premium of X if

ξ ∈
{
E[X],

√
Var(X),Var(X)

}
,

The inverse of G can easily be computed:

G−1(p) = −1
ξ
F−1
X (1 − p).

Proof. For γ ≥ 0, we define Ψγ
X pointwise: Ψγ

X(0) := 0, Ψγ
X(1) := 1. Let

u ∈ (0, 1) and let x > 0 such that

u = H(x) := 1 − FX(x).

H is the decumulative distribution function of X. By Assumption 1, FX is a
bijective function from (0,∞) to (0, 1). It holds x = H−1(u) and we define

Ψγ
X(u) := H(H−1(u) − γξ).

It follows
Ψγ
X(H(x)) = H(x− γξ), x > 0, γ ≥ 0. (39)

It is straightforward to see that γ 7→ Ψγ
X(u) is continuous and increasing and

that u 7→ Ψγ
X(u) is increasing and concave, because the density corresponding

to FX is log-concave. Hence the family (Ψγ
X)γ≥0 is a FCDF. It additionally

satisfies conditions [E], [W] and [T], hence by Theorem 13.1, there exist a unique
distribution function Ĝ such that Ĝ(0) = 1

2 and

Ψγ
X(u) = Ĝ(Ĝ−1(u) + γ).

By Equation (6), Ĝ can be identified by

Ĝ(x) = 1 − FX

(
F−1
X

(
1
2

)
− xξ

)
, x ∈ R, ξ>0.

We shift Ĝ and define
G(x) = 1 − FX(−xξ)
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and we have
Ψγ
X(u) = G(G−1(u) + γ). (40)

Let g(x) := ξfX(−xξ). It follows for γ > 0 by Assumption 3:

lim
u↘0

∂

∂u
Ψγ
X(u) = lim

u↘0

g
(
G−1(u) + γ

)
g (G−1(u))

= lim
x→∞

fX(x− ξγ)
fX(x)

< ∞.

Hence because Ψγ
X is concave for all γ ≥ 0 its partial derivative is bounded on

the unit uniterval and the coherent risk measures induced by the family (Ψγ
X)

are well defined on L1. It follows by Equation (39) for all γ ≥ 0

E[X] + γξ =
∞̂

0

1 − FX(x− γξ)dx

=
∞̂

0

Ψγ
X(1 − FX(x))dx

= ρΨγ
X

(−X).

Example 13.13. Let X ∼ Γ(α, β) be a gamma distributed random variable
with mean α

β and variance α
β2 modelling a risk or an aggregated risk insured by

the insurance company. The gamma distribution satisfies Assumption 1 − 3, if
α ≥ 1. We apply the standard deviation premium principle and choose

ξ =
√

Var(X) =
√
α

β
.

Additionally, assume that the insurance faces another risk Z and wishes to
compare both risks using a coherent risk measure, which reproduces the stan-
dard deviation premium for X and is induced by the FCDF

(
ρΨγ

X

)
, defined

via Equation (37). Table 9 compares the standard deviation premium of X,
to the premium of various other risks computed using ρΨγ

X
. The premium of a

nonnegative risk Z ∈ L1 under ρΨγ
X

is equal to

ρΨγ
X

(−Z) =
∞̂

0

Ψγ
X(1 − FZ(s))ds. (41)

The integral appearing in Equation (41) can be computed using standard nu-
meric methods.

We compare risk X to an exponential, a Gaussian, a Bernoulli and a Pareto
risk. If Z ∼ Pareto(xm, a) is Pareto distributed with scale xm > 0 and shape
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a > 0 and if a ∈ (1, 2], then Z has finite first and infinite second moments. In
particular, the standard deviation premium principle cannot be applied to Z.
The expected value of Z is axm

1−a for a > 1. We further compare risk X to a
risk W defined by the loss occurring in a layer with deductible D ≥ 0 and cover
C > D of a Pareto distributed loss Z, i.e.

W := (Z −D)+ − (Z − C −D)+.

Let the distribution of W be denoted by

Fα,xm,D,C
W (x) :=

{
1 −

(
xm

x+D

)α
, (xm −D, 0)+ ≤ x < C

1 , x ≥ C.

It turns out that for γ = 1, the Standard Deviation Premia of the exponential
and the Gaussian risk are very similar to the corresponding premia computed
using ρΨ1

X
. The differences between both premia for Bernoulli or Pareto risks

are very large.

X Zexp ZGauss ZB Z∞ Z250 Z10

Expected Value 1 1 1 1 1 1 1
SD premium 1.47 2 1.20 10.95 ∞ 8.1 2.92

Premium under ρΨ1
X

1.47 1.99 1.19 4.25 4.31 3.46 2.64

Table 9: Compare the standard deviation (SD) premium principle to the
premium principle using the coherent risk measure ρΨ1

X
applied to various

risks: X ∼ Γ
( 9

2 ,
9
2
)
, Zexp ∼ exp(1), ZGauss ∼ N(1, 2

10 ), ZB is Bernoulli dis-
tributed taking the value 100 with probability 1

100 . Z∞ ∼ Pareto( 1
10 ,

10
9 ),

Z250 ∼ F
10
9 ,0.2,0.2,250
W and Z10 ∼ F

10
9 ,0.36,0.36,10
W . The concave distortion function

Ψ1
X is drawn in Figure 12 as Ψ4.

13.2.2 Interpretation of the Coherent Risk Measure ρΨγ
X

As above let X describe some insurance risk and let πX be the premium of
X obtained by a moment based premium principle. Let the FCDF (Ψγ

X) be
defined such that

πX = ρΨγ
X

(−X).
The following proposition offers an interpretation of the premium principle based
on the coherent risk measure ρΨγ

X
. There is an acceptability index α such that

the performance of the future random cash flow

ρΨγ
X

(−Z) − Z

for any risk Z ∈ L1 is at least as high as the performance of the cash flow
πX − X. Using only the acceptability index α as a criterion, the insurance is
indifferent insuring risk X and obtaining premium πX or insuring another risk
Z in return for premium ρΨγ

X
(−Z).
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Proposition 13.14. Let X satisfy Assumptions 1 − 3. For some ξ > 0, let the
FCDF (Ψγ

X)γ≥0 be defined as in Equation (37). Let γ0 ≥ 0 and

πX := E[X] + γ0ξ.

There exist an acceptability index α : L1 → [0,∞] such that

α (πX −X) = γ0 ≤ α
(
ρΨγ0

X
(−Z) − Z

)
, (42)

for all Z ∈ L1 with Z ≥ 0.

By convention, the performance of the null-position is infinite. Therefore the
right-hand side of Equation (42) can be equal to infinity, for example if Z = 0.

Proof. The family of coherent risk measures
(
ρΨγ

X

)
γ≥0

has domain L1 and
defines an acceptability index α by

α : L1 → [0,∞]

Y 7→ sup
{
γ ≥ 0 : ρΨγ

X
(Y ) ≤ 0

}
,

see Section 11. Let Z ∈ L1 such that Z ≥ 0. It holds using the translation
property for coherent risk measures

α
(
ρΨγ0

X
(−Z) − Z

)
= sup

{
γ ≥ 0 : ρΨγ

X

(
ρΨγ0

X
(−Z) − Z

)
≤ 0
}

= sup
{
γ ≥ 0 : ρΨγ

X
(−Z) ≤ ρΨγ0

X
(−Z)

}
≥ γ0

and similarly

α (πX −X) = sup
{
γ ≥ 0 : ρΨγ

X
(−X) ≤ E[X] + γ0ξ

}
= γ0.

14 Conclusion
In this Chapter we point out the relation between a family of concave distortion
function (FCDF) and coherent risk measures. A concave distortion function
is a concave function mapping the unity interval onto itself. A coherent risk
measures can be defined by distorting the original distribution function of a
random variable: losses are given more weight and gains are given less weight.
We have shown that a FCDF satisfying a certain translation equation, can be
represented by a distribution function. Our representation theorem is novel, it
generalizes a comparable result obtained by Tsukahara (2009).

In contrast to Tsukahara (2009), our representation results also covers FCDF
which are not strictly increasing in the distortion level like the FCDF related to
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the expected shortfall and FCDF which jump like the “ess sup-expectation con-
vex combination” distortion function defined and applied to finance by Bannör
and Scherer (2014).

On the other hand, Tsukahara’s result does not require the family of dis-
tortion functions to be concave. But concavity is a natural requirement when
dealing with coherent risk measures. A risk measure should encourage diver-
sification, i.e. the risk of a portfolio must not exceed the sum of the risk of
its components. A risk measures induced by a distortion function which is not
concave, is in general not sub-additive and does not encourage diversification.

An application of the representation result can be found in actuarial science:
assume there is an insurance company selling mainly contracts to insure a risk
X. The risk X may describe a loss due to some natural disaster like fire.
The insurance company computes the premium of the insurance contract using
a moment based premium principle, e.g. the premium is calculated as the
expected value of X plus a multiple of the standard deviation of X. Such a
premium principle is easy to understand and to explain to policyholders but it
is not monotone, i.e. different insurance risks cannot be compared with each
other and cannot be priced in a consistent way.

Our representation theorem makes it possible to construct a coherent risk
measure ρX , induced by a concave distortion function and depending on the
distribution function of X, such that the premium principle of that risk measure
reduces to a moment based premium principle when applied to risk X. The price
of another insurance risk Z may then be compared to the standard deviation
premium of X, even if the variance of Z does not exist, by applying ρX both to
X and to Z.

The premium principle based on ρX is consistent with a moment based
premium principle like the standard deviation premium principle. The residual
cash flow of the insurance company insuring risk X in return for the (standard
deviation premium) is the difference of the premium and the insurance risk X.
We show that there exists an acceptability index (performance measure) such
that the performance of the residual cash flow insuring risk X is equal to the
performance of the residual cash flow insuring any other risk Z, if the premium
of Z is computed based on ρX .

Using only this acceptability index as a criterion, the insurance is indifferent
insuring risk X and obtaining a standard deviation premium or insuring another
risk Z in return for the premium ρX(−Z).
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Part IV

Financial Markets with Frictions
15 Introduction
In this Part, we obtain closed-form solutions of bid and ask prices of European
plain vanilla and barrier options in markets with frictions. The construction of
bid and ask prices is heavily based on concave distortion functions as introduced
in Chapter III. Markets with frictions are markets with transaction costs. While
in frictionless markets the risky underling, e.g. a stock, can be bought and sold
for the same price St at time t, in market with frictions, there are two prices:
an investor can purchase the stock for the ask price Sat and sell the stock for
the usually lower bid price Sbt . Simple proportional transaction costs models
assume the underlying “fair” price of the stock can be modelled by a stochastic
process (St) and define for numbers µ ∈ (0, 1) and λ > 1 the bid and ask prices
of the stock by

Sbt = µSt and Sat = λSt.

The spread Sat −Sbt measures the fee an investor has to pay to the exchange for
trading the stock.

In contrast to complete financial markets without any imperfections where
prices are obtained by a linear pricing rule, prices in markets with frictions
can be described by sublinear pricing functionals, see Jouini (2000). Such pric-
ing functionals may also describe prices in markets with additional or different
kind of frictions than (proportional) transaction costs, like short sales costs or
constrains, borrowing costs, taxes and other market imperfections, see Jouini
and Kallal (2001), Koehl and Pham (2000), Bion-Nadal (2009) and references
therein.

Jouini and Kallal (1995, 2001) and Jouini (2000) introduced an axiomatic
approach to describe financial markets with frictions. They considered a finite
time-horizon T > 0 and a multiperiod economy, where investors can trade a
riskless and a risky asset. Let N be the number of trading periods in [0, T ].
Jouini (2000) modelled the bid and ask price processes of the risky asset by
adapted processes

0 < Sbi ≤ Sai , i = 0, .., N.

They postulate the existence of a pricing functional p and define the ask price
of a contingent claim C by p(C), and the bid price by −p(−C), hence buying
the contingent claim C is the same as selling −C.

Furthermore, p is assumed to satisfy the following axioms: (i) p is monotone,
i.e. no agent is willing to pay more for less, (ii) p is sub-additive, i.e. it is less
expensive buying the portfolio C+C ′ than buying C and C ′ separately. Indeed
an agent might save transaction costs hedging a portfolio instead of hedging the
components of the portfolio separately: due to possible diversification effects,
some orders in the risky asset may cancel out. (iii) p is positively homogeneous,

88



i.e. the ask price of a position scales linearly with its size:

p(λC) = λp(C), λ ≥ 0.

There is some criticism about this axiom. For instance Föllmer and Schied
(2002) argued that ’[...] an additional liquidity risk may arise if a position is
multiplied by a large factor. This suggests to relax the conditions of positive
homogeneity [...].’ But positive homogeneity is a standard assumption in classi-
cal financial markets and holds approximately for reasonable values of λ. Cetin
et al. (2004) and Bion-Nadal (2009) extended Jouini (2000), allowing prices to
depend on the size of the position. (iv) p does not introduce arbitrage. This is
a natural requirement of any financial market. (v) p is lower-semi-continuous,
which is a rather technical axiom. (vi) For a future random cash flow C, p(C)
is less than or equal to the price of the smallest self-financing trading strategy
dominating4 C, i.e. it is not possible to obtain a better payoff than C for lower
cost by directly investing in the underlying. See Jouini and Kallal (1995, 2001)
and Jouini (2000) for a more detailed discussion and economic interpretation of
the axioms (i)-(vi).

Jouini and Kallal (1995) showed that the market is arbitrage-free, if and only
if there exist a measure Q, equivalent to the physical measure P, and a process
ZQ, which is a martingale under Q, such that Sb ≤ ZQ ≤ Sa. This leads to an
easy construction of arbitrage-free financial markets with frictions: we take a
frictionless market, where the risky underlying is described by some martingale
(Si)i=0,..,N under the risk-neutral measure. Introducing a sequence of dynamic
coherent risk measures (ρi)i=0,..,N and defining a pricing functional by pi(.) :=
ρi(−.), we introduce frictions into the market by defining the ask price process
of the underlying by (pi(SN )) and the bid price process by (−pi(−SN )). The
sequence (pi) induced by a sequence of coherent risk measures fulfils axioms
(i)-(vi).

Contribution
Bid and ask prices are recursively defined in a discrete time model with N
trading periods. We look at two special cases: the static case N = 1 and the
asymptotic case N → ∞. In both cases we obtain closed-form solutions of bid
and ask prices of European options by introducing a new parameter γ, which
enters into the dividend yield.

In the static case we obtain closed-form solutions for bid and ask prices of
European options, if the log-returns are normal or Laplace distributed. Existing
closed-form solutions of the risk-neutral price of European options are extended
with a new parameter γstatic ≥ 0, which adjusts the dividend yield. The greater

4A self-financing trading strategy is a way to invest in the market, i.e. going long and
short in the risky asset without exogenous infusion or withdrawal of money except for an
initial investment; the purchase of new assets must be financed by the sale of old ones. For a
given contingent claim C, the price of the smallest self-financing trading strategy dominating
C, is the smallest investment in a self-financing trading strategy, which is always greater or
equal to C.
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γstatic, the greater the bid-ask spread. The static case is certainly of interest
because the Laplace distribution has fatter tails than the normal distribution,
which appears in the Black-Scholes model, and might therefore be better suited
to model stock price log-returns.

We also look at the asymptotic case N → ∞ and prove convergence of
bid and ask prices for many American and Exotic options in a binomial-type
model. We are interested in the asymptotic behaviour of the model to obtain
closed-form solutions for efficient numerical applications.

In a binomial-type model with frictions, we develop closed-form solutions
for European plain vanilla and some barrier options and obtain in the limit
an extended Black-Scholes formula with a new parameter γcontinuous ≥ 0. The
limit bid or ask price of a possible path-dependent option is given by the Black-
Scholes price of the option but on a stock with an adjusted dividend yield.
Hence existing numerical methods, developed to price options in a Black-Scholes
setting in classical finance, can also be used to compute bid and ask prices of
such options. No new software need to be written to apply our formulas in
financial institutions.

Practical Relevance
We think the main application area is the possibility of computing implicitly a
parameter γ, such that given bid and ask market prices of a European or an
American plain vanilla option are exactly matched by our two-price formula.

This idea is comparable to the concept of implied volatility. In principle
volatilities could be constant across strikes, maturities, and underlying assets,
hence the preference by practitioners for quoting implied volatilities instead
of (mid-)prices. Similarly the parameter γ could be constant across all three
dimensions, even though there are many non-linearities between the bid-ask
spread and strikes, maturities, and underlying assets. It should therefore be
beneficial to quote an implicitly computed γ instead of the absolute bid-ask
spread of a plain vanilla option. Indeed Corcuera et al. (2012) used a setting
similar to our model, but in static time, and showed empirically that the liquidity
dry up during the period 2007-2009 is described very well by the parameter γ.
Our discrete time model makes it possible to analyse also path-dependent and
American options.

Up to now, traders quote the difference between implied bid and ask volatil-
ities to describe the current market liquidity of plain vanilla options. Both this
heuristic method and our proposal of computing implicitly the parameter γ
have the advantage of using only present market data and of being extremely
fast in terms of computational time, in both cases one has to invert the Black-
Scholes formula. However, we show in two empirical studies that both the static
and the continuous time-model describe (il)liquidity of European and American
plain vanilla options very well over time compared to the heuristic method of
quoting implied bid and ask volatilities.
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Limitations
In the static model, we obtain closed-form for European plain vanilla options if
the pricing functional is defined in terms of the distribution of the log-returns
of the underlying. In particular, the choice of the pricing functional depends on
the model of the log-returns.

In the discrete binomial-type model, convergence is only proven for monotone
payoffs, for example European or American plain vanilla, lookback, Asian and
some barrier options (up-and-out put, down-and-out call, down-and-in put and
up-and-in call). The underlying is essentially modelled by a binomial model in
discrete time and by geometric Brownian motion in continuous time. Hence the
volatility is assumed to be constant over time and log-returns are assumed to be
(approximately) normal distributed. Future research need to be done to treat
contingent claims which are not monotone with respect to the underlying, e.g.
a barrier up-and-out call option and to generalize the market model replacing
for example the constant volatility by a mean-reverting stochastic process.

Literature Review
In general, liquidity is effected by many factors like the ability of trading large
quantities, by the speed, the cost and the price impact of the trade. Several
measures have been developed in literature to capture some or all of these fac-
tors. Amihud (2002) defines the liquidity of a stock by the average of the ratio
of absolute daily returns to volume, where the average is taken over a month.
Acharya and Pedersen (2005) developed a liquidity adjusted capital asset pricing
model and measured liquidity using a normalized version of Amihud’s liquid-
ity measure. Liu (2006) analyse the relation between liquidity risk and asset
pricing using a liquidity measure based on historic data. Goyenko et al. (2009)
compared several well known liquidity measures using stock data from 1993 to
2005.

In contrast to the above studies, which define (il)liquidity mainly using a
historic time series of the stock, both our static model and the extended Black-
Scholes formula are well suited to be applied to an option surface and needs
only present market data to compute the market implied liquidity parameter γ.

Recently, Madan and Cherny (2010) developed the conic finance theory. Out
discrete time market model with frictions is connected to conic finance by the
common approach of using recursively defined sublinear functionals to describe
bid and ask prices. Indeed our discrete market model is closely related to dis-
crete time conic finance models, where bid and ask prices are defined recursively
using nonlinear expectations, see Leippold and Schärer (2017), Madan (2010),
Madan et al. (2013, 2017a) and Madan and Schoutens (2012b). Time-consistent
nonlinear expectations are connected with solutions to backward stochastic dif-
ference equations, see Cohen and Elliott (2010). See Bielecki et al. (2013, 2015)
for a framework incorporating transaction costs in discrete time conic finance
models.

Our work is related to Madan et al. (2017b) who showed in a general context
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that, under some technical conditions, an iterated spectral risk measure, which is
a risk measure in a multiperiod setting based on distortion functions, converges
to some g-expectation. A g-expectation is a non-linear expectation proposed by
Peng (2004).

Relative to these papers our contribution is to proof convergence of bid and
ask prices in a binomial-type model with frictions when the number of trading
periods approaches infinity and to obtain closed-form solutions for bid and ask
prices for plain vanilla and barrier options in the limit.

Contents
The remainder of this Chapter is organized as follows. In Section 16, we intro-
duce a discrete time-model for a market with frictions. A special case of the
discrete model, the static case, is analysed in Section 17. In the static case
we are able to derive closed-form solutions for bid and ask prices of European
options if the log-returns are normal or Laplace distributed. Those formulas are
applied to real market data of European options in Section 17.5.

In Section 18.2, we present the classical binomial model. In Section 18.3 we
prove convergence of bid and ask prices for European and American possibly
path-dependent options. In Section 18.7, we apply the results to real market
data of American options. Section 19 concludes.

16 The Formal Setup
We make the following economic assumptions: we assume all investors have a
finite time-horizon and trading can take place only finitely many times. There
is a very liquid bank account and a risky-asset whose bid and ask prices can
be described by binomial trees. There exists a pricing functional and bid and
ask prices of a contingent claim can be computed via the pricing functional. At
the end of the time-horizon, the bid-ask spread of all products is assumed to be
zero.

Formally, we assume the following framework: Let T > 0 be some time-
horizon and N ∈ N be the number of trading periods, each trading period has
length T

N . We introduce a frictionless market and extend it to a market with
frictions using a pricing functional. Let the risky-asset

(Si)i=0,1,..,N

be described by a nonnegative adapted stochastic process on a given filtered
probability space (

Ω, (Fi)i=0,...,N ,F ,P
)

satisfying the usual conditions. By

Bi = (1 + r)i, i = 0, .., N,
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we denote a risk-free bank account. We assume the market is arbitrage-free and
denote by Q a risk-neutral measure, such that the discounted price process of
the risky-asset is a Q−martingale. The process (Si) describes the risky asset of
the underlying frictionless market. In this section we assume that the interest
rates are equal to zero, i.e. we work with discounted cash flows, and that the
stock is not paying any dividends. Those assumptions are only made to keep
the notation simple and are relaxed in Section 18.2 and 18.3. Let

L∞ := L∞ (Ω,Q,F)

be the set of F−measurable bounded random variables with respect to the
probability measure Q and (ρi)i=0,...,N be a set of dynamic, time-consistent
coherent risk measures being continuous from above

ρi : L∞ → L∞
i := L∞ (Ω,Q,Fi) .

The following definition of dynamic coherent risk measures are a direct ex-
tension of Definition 10.1 and is taken from Föllmer and Schied (2011, Definition
11.1)
Definition 16.1. (Coherent conditional risk measure). A map ρi : L∞ → L∞

i

is called a coherent conditional risk measure if it satisfies the following properties
for all X,Y ∈ L∞:

R1: Conditional cash invariance: ρi(X +Xi) = ρi(X) −Xi for any Xi ∈ L∞
i .

R2: Monotonicity: X ≤ Y ⇒ ρi(X) ≥ ρi(Y ).

R3: Conditional convexity: ρi(λX + (1 − λ)Y ) ≤ λρi(X) + (1 − λ)ρi(Y ) for
λ ∈ L∞

i and 0 ≤ λ ≤ 1.

R4: Conditional positive homogeneity: ρi(λX) = λρi(X) where λ ∈ L∞
i and

0 ≤ λ.

If X is some future random cash flow, the random value ρi(X) can be inter-
preted as the risk of X as if measured at the (future) trading period i. The
interpretation of axioms R1-R4 can directly be adopted from the static case.
For example the conditional cash invariance axiom means we can add certain
amount with respect to the information available at time i to the position X
and the risk will thereby reduce exactly about that amount.

The dynamic risk measure is called continuous from above, if it holds

Xn ↘ X ⇒ ρi(Xn) ↗ ρi(X) for any sequence (Xn) ⊂ L∞ and X ∈ L∞,

The dynamic risk measure is called time-consistent, if

ρi+1(X) ≤ ρi+1(Y ) ⇒ ρi(X) ≤ ρi(Y ), X, Y ∈ L∞, i = 0, .., N − 1

or equivalently

ρi(X) = ρi(ρi+1(X)), X ∈ L∞, i = 0, ..., N − 1,

see Föllmer and Schied (2011, Definition 11.10 and Lemma 11.11).
Note that by R4, axiom R3 is equivalent to the axiom
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R3’ Conditional sub-additivity: ρi(X + Y ) ≤ ρi(X) + ρi(Y ).

We call the operator
pi(.) := ρi(−.), i = 0, ..., N,

a price functional. Then (pi) fulfils the following properties, see Föllmer and
Schied (2011, Definition 11.1, Theorem 11.2. and Lemma 11.11). Let X,Y ∈
L∞. It holds for i = 0, ..., N ,

P1: Cash invariance: pi(X +Xi) = pi(X) +Xi for any Xi ∈ L∞
i .

P2: Monotonicity: X ≤ Y ⇒ pi(X) ≤ pi(Y ).

P3: Sub-additivity: pi(X + Y ) ≤ pi(X) + pi(Y ).

P4: Positive homogeneity: pi(λX) = λpi(X), where λ ∈ L∞
i and 0 ≤ λ.

P5: Continuity from below: It holds Xn ↗ X ⇒ pi(Xn) ↗ pi(X) for any
sequence (Xn) ⊂ L∞.

P6: Time-consistency: pi(X) = pi(pi+1(X)), i = 0, ..., N − 1.

We additionally assume

P7: No-arbitrage: EQ [X| Fi] ≤ pi(X).

Jouini (2000) modelled the risk-free bank account as perfectly liquid. Property
P1 states the same: investors may insert or withdraw any amount of cash to
or from the risk-free bank account without transaction costs. Properties P2-P5
have been proposed in similar form and are discussed by Jouini and Kallal (1995,
2001) and Jouini (2000). Time-consistency has been introduced by Peng (2004)
for nonlinear expectations. It means that prices behave consistently over time:
prices can be computed either directly or using an intermediate instant of time,
see Bion-Nadal (2009). Property P7 guarantees that the bid-ask spread is always
greater or equal to zero and that the market is arbitrage-free, see Proposition
16.2. Our model of bid and ask prices can be seen as a discrete version of the
continuous time model via dynamic convex risk-measures developed by Bion-
Nadal (2009).

Bid and ask prices of a contingent claim C ∈ L∞ at trading period i are
defined by

bidi(C) := −pi(−C) and aski(C) := pi(C), i = 0, ..., N,

i.e. as in Jouini and Kallal (1995), Staum (2004) and Bion-Nadal (2009), we
consider that selling C is the same as buying −C. By property P1, we assume
that at the end of the time-horizon the bid-ask spread of C is zero. We therefore
do not have to distinguish between contingent claims with asset delivery and
cash settlement. Bid and ask prices of the risky asset are then defined by the
processes

Sbi := −pi(−SN ) and Sai := pi(SN ), i = 0, ..., N.
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American contingent claims can be described by adapted stochastic processes,
bid and ask prices of such claims are defined in Section 18.1.

We call the tuple
(
(Bi) ,

(
Sbi
)
, (Sai ) , (pi)

)
a security price model. We show

that our security price model does not admit arbitrage. Furthermore, it is not
possible to construct a self-financing portfolio, which super-replicates C but can
be bought for less than p0(C).

Proposition 16.2. The security price model
(
(Bi) ,

(
Sbi
)
, (Sai ) , (pi)

)
admits no

arbitrage and the ask price p0(C) of a contingent claim C ∈ L∞ is less or equal
to the price of the smallest self-financing trading strategy dominating C.

Proof. We trivially have

0 ≤ Sbi ≤ EQ [SN | Fi] = Si ≤ Sai , i = 0, ..., N,

hence by Jouini and Kallal (1995, Theorem 3.2), the security price model admits
no multiperiod free lunch and is hence arbitrage-free. Let

A0 := {X ∈ L∞, ρ0(X) ≤ 0} .

For a probability measure Q equivalent to Q, define

αmin
0 (Q) := sup

X∈A0

EQ[X].

It holds αmin
0 (Q) ≤ 0, hence by Föllmer and Penner (2006, Corollary 4.12.),

there exist a set of probability measures (Qe), such that each element of Qe is
equivalent to Q and

pi(X) = sup
Q∈Qe

EQ[X| Fi], i = 0, .., N.

Let P be a set of probability measures containing all probability measures P
which are equivalent to Q for which exist a P−martingale

(
ZPi
)

with

Sbi ≤ ZPi ≤ Sai , i = 0, .., N.

It follows Qe ⊆ P: for each Qe ∈ Qe there is a Qe−martingale
(
ZQ

e

i

)
, namely

ZQ
e

i := EQe [SN | Fi], i = 0, .., N,

such that
Sbi ≤ ZQ

e

i ≤ Sai , i = 0, .., N.

Let C ∈ L∞. By Jouini (2000, Theorem 1.), the value p∗(C) := sup
P∈P

EP [C] is less

or equal to the price of the smallest self-financing trading strategy dominating
C. As p0(C) ≤ p∗(C), we conclude.
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16.1 Parametrization of the Pricing Functional
In this Section, we introduce a parametric model for the pricing functional
(pi). We allow the pricing functional to depend on a parameter γ ≥ 0 with the
following interpretation: the greater γ, the greater the bid-ask spread; for γ = 0,
the spread is equal to zero. To obtain such parametrization, we let the coherent
risk measures, defining the pricing functional, be induced by a family of concave
distortion functions (FCDF), as defined by Definition 12.7. We assume that the
FCDF satisfies assumption [E] and [A].

Assumption [A] is used to prove convergence of bid and ask prices. By
Assumption [E] the FCDF (Ψγ) fulfils

Ψ0
(

1
2

)
= 1

2
.

All FCDF satisfying Assumption [A] are also (approximately) equal in a small
neighbourhood around the point (u, γ) =

( 1
2 , 0
)
. Therefore we will see that the

particular choice of the FCDF to model the pricing functional in the discrete
time model does not matter when the number of trading periods tends to infinity.

As in Madan et al. (2013, 2017a) and Leippold and Schärer (2017), we gen-
eralize the static coherent risk measure defined in Equation (21) to the dynamic
case. For X ∈ L∞ and i = 0, ..., N let

ρ̃γi (X) :=
∞̂

0

(Ψγ (Qi [X < y]) − 1) dy +
0ˆ

−∞

Ψγ (Qi [X < y]) dy, γ ≥ 0,

where
Qi[A] := EQ [1A |Fi ] , i = 0, ..., N, A ∈ F ,

is a conditional probability. Define

ργN := ρ̃γN

and recursively

ργi := ρ̃γi (−ργi+1), i = 0, ..., N − 1, γ ≥ 0.

The pricing functional used in this article is then defined by

pγi (.) := ργi (−.), i = 0, ..., N, γ ≥ 0. (43)

The recursive definition makes the pricing functional time-consistent. By as-
sumption [E] it holds

EQ[X| Fi] = p0
i (X).

The parameter γ ≥ 0 describes the liquidity of the market: the greater γ, the
greater the bid-ask spread. For γ = 0, bid and ask prices coincide and are
identical to the risk neutral price operator.
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Due to the time-consistency, for a fixed γN ≥ 0, bid and ask prices of a
future random cash flow CE ∈ L∞ can be obtained by recursions:

bidN
(
CE
)

= askN
(
CE
)

= CE ,

bidi
(
CE
)

= −pγN

i

(
−bidi+1

(
CE
))
, i = 0, .., N − 1, (44)

and aski
(
CE
)

= pγN

i

(
aski+1

(
CE
))
, i = 0, .., N − 1.

We explicitly allow the parameter γN , which describes the bid-ask spread in the
N th model, to depend on N , in order to obtain convergence results for N → ∞.

17 Static Time: Implied Liquidity in Option Mar-
kets

The economic model presented in Section 16 contains a static model as a special
case by setting the number of trading periods N equal to one. Let us look at
a nonnegative future random cash flow X, e.g. a plain vanilla European put or
call option, which only depends on the value SN of the stock. By Section 16.1,
the bid price of X in static time with respect to some continuous FCDF (Ψγ)
is defined as follows:

bidγ0(X) = −p0(−e−rTX)
= −ρ0(e−rTX)

= e−rT
ˆ ∞

−∞
xdΨγ (FX(x)) (45)

= e−rT
ˆ ∞

−∞
xΨ

′

γ (FX(x)) fX(x)dx, γ ≥ 0, (46)

compare also with Equation (23). FX is the distribution function of X with
respect to the equivalent martingale measure Q. The factor e−rT discounts the
future random cash flow X. For Equation (46), we assume that the distribution
function FX of X is differentiable with density fX and that the partial derivative

Ψ
′

γ(u) = ∂

∂u
Ψγ(u)

exists. Similarly, the ask price is defined by

askγ0(X) = −e−rT
ˆ ∞

−∞
xdΨγ (F−X(x)) . (47)

Note that the functionals bidγ0(.) and askγ0(.) are well defined on L1 if the
FCDF is induced by the Laplace distribution, see Example 17.3 and Remark
12.6. They are well defined on L2 if the FCDF corresponds to the WANG-
transform, see Equation (19). Both the Laplace and the normal distribution
play an important part in this Section.
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Interestingly, the recently developed conic finance theory, see Madan and
Cherny (2010), provides identically formulas for bid and ask prices as stated
in Equations (45) and (47). We therefore discuss conic finance in Section 17.1
briefly.

Let us assume that FX is log-concave. If we use the family of distortion
functions that is induced by FX , see Equation (27), we are able to derive explicit
formulas for the bid and ask prices of the future random cash flow X. In
particular the bid and ask prices of European vanilla options are equal to the
risk-neutral price of an option on the underlying with an adjusted dividend yield.
It is then possible to derive closed-form solutions provided that the log-returns
are normal or Laplace distributed.

Section 17 is structured as follows: In Section 17.1 we introduce conic finance.
In Section 17.3 we derive closed-form solutions for bid and ask prices of European
options. Two important examples, the Black-Scholes and the Laplace-model are
discussed. In Section 17.4 the concept of implied liquidity is defined and applied
to real data in Section 17.5.

17.1 Introduction to Conic Finance
Madan and Cherny (2010) developed the conic finance theory extending clas-
sical financial models. See Corcuera et al. (2012), Dhaene et al. (2012), Guil-
laume (2015), Guillaume and Schoutens (2015), Guillaume et al. (2018), Madan
(2012a,b, 2014, 2016b, 2018), Madan et al. (2016) and Madan and Schoutens
(2011, 2012a, 2016a,b) for applications of the conic finance theory.

Madan and Cherny (2010) modelled the market as a passive counterparty
that demands a minimal performance γ > 0 to be willing to enter into a contract
with an investor. The performance is measured by an acceptability index α, see
Section 11. Conic finance replaces the classical one-price market model by a
two-price market model, where an investor has to pay an ask price to buy
an asset from the market and receives a usually smaller bid price for selling
the same asset to the market. Prices are defined from the perspective of the
market. Motivated by competition, the ask price of a future random cash flow
X is determined as the minimal price a such that the residual future random
cash flow a−X has at least the performance γ, i.e.

ask(X) = inf {a ∈ R : α(a−X) ≥ γ}
= inf {a ∈ R : ργ(a−X) ≤ 0}
= inf {a ∈ R : ργ(−X) ≤ a}
= ργ(−X)

By this argumentation, they derived the following formulas for bid and ask
prices at level γ ≥ 0 in a static world.

bid(X) = −ργ(X) and ask(X) = ργ(−X), γ ≥ 0. (48)

The parameter γ describes the liquidity of the market. The greater γ, the
greater the bid-ask spread. Madan and Cherny (2010) also discussed the exis-
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tence of a set of hedging cash flows H with zero initial cost, which are assumed
to be perfectly liquid. The ask price is then defined by

askhedging(X) = inf {a : there exisits H ∈ H such that α(a+H −X) ≥ γ} .

The bid price using hedging opportunities is defined similarly. We work in a
market with frictions, which means even the stock cannot be bought and sold for
the same price and hence we can reasonably assume that there are no perfectly
liquid hedging cash flows, i.e. H = ∅.

We see that the “conic bid and ask prices” coincide with the static version of
the bid and ask prices defined in Section 16. Both approaches model bid and ask
prices using coherent risk measures. While the axiomatic approach by Jouini
(2000) and Bion-Nadal (2009) postulate the definitions for bid and ask prices,
conic finance is able to explain this definition economically using the theory of
performance measures.

17.2 An Exponential Stock Price Model
In this Section, we provide a concrete static model of the stock price. Inspired
by Corcuera et al. (2009), let us model the stock at the date T by a random
variable ST , which is defined in the following way: let Z be a random variable
with mean zero and variance equal to 1. Its distribution function is denoted by
FZ , its density by fZ . The random variable

√
TZ has then variance T and the

underlying ST at time T is defined by

ST = S0e
(r−q+ω)T+σ

√
TZ (49)

where σ > 0, r is the risk-free rate, q the dividend yield and ω ∈ R is a mean
correcting term, i.e. ω is chosen such that

e−(r−q)TE (ST ) = S0, (50)

where the expectation is taken under an equivalent martingale measure Q. In
the following, we assume that FZ is symmetric about zero, i.e.

FZ(−x) = 1 − FZ(x), x ∈ R.

Remark 17.1. Note that Equation (49) describes the stock price at maturity,
where we assume a bid-ask spread of zero. At time zero, the stock may have a
positive bid-ask spread. The “process” {S0, ST } describes the risky asset of the
underlying frictionless market.

17.3 Bid and Ask prices of European Options
We now introduce a call option with strike K and maturity T on the underlying
ST . It is easy to see that the distribution of the call option C = (ST −K)+ is

FC(x) = FST
(x+K), x ≥ 0

= FZ

(
log (x+K) − log (S0) − (r − q + ω)T

σ
√
T

)
, x ≥ 0,
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see for example Madan and Schoutens (2016a, p. 110). Let us assume that FZ
induces a family of distortion functions by

Ψγ
Z(u) = FZ

(
F−1
Z (u) + γ

)
, γ ≥ 0, (51)

compare with Remark 12.12. In particular, we assume that fZ belongs to the
family of log-concave densities. This leads to particularly simple formulas for the
bid and ask prices because the distorted distribution function can then explicitly
be calculated via Equations (45) and (47). For a call option it holds

Ψγ
Z (FC(x)) = FZ

(
log (x+K) − log (S0) − (r − q + ω)T

σ
√
T

+ γ

)
, x ≥ 0.

We calculate the bid price of a call option by

bidγ (C) = e−rT
ˆ ∞

−∞
xdΨγ

Z (FC(x))

= e−rT
ˆ ∞

0
x
fZ

(
log(x+K)−log(S0)−(r−q+ω)T

σ
√
T

+ γ
)

σ
√
T (x+K)

dx

= e−rT
ˆ ∞

−d+γ

(
S0e

σ
√
Ty+(r−q+ω)T−σ

√
Tγ −K

)
fZ (y) dy, (52)

where

d =
log
(
S0
K

)
+ (r − q + ω)T
σ

√
T

. (53)

From Equation (52) we see that the bid price of an option C on a stock with
dividend yield q at level γ ≥ 0 equals the risk neutral price of an option on a
stock with a different dividend yield

q̃ = q + γσ√
T
.

Similarly, the ask price can be obtained by evaluating F−C , it holds

askγ(C) = e−rT
ˆ ∞

−d−γ

(
S0e

σ
√
Ty+(r−q+ω)T+σ

√
Tγ −K

)
fZ (y) dy (54)

= bid−γ(C).

Hence, if we have an analytic formula for the bid price, we just need to substitute
γ by −γ to get an analytic formula for the ask price.

Analogically, it holds for the bid price of an European Put option P =
(K − ST )+

bidγ(P ) = e−rT
ˆ ∞

d+γ

(
K − S0e

−σ
√
Ty+(r−q+ω)T+σ

√
Tγ
)
fZ (y) dy (55)
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and the ask price of a put option can be expressed by

askγ(P ) = e−rT
ˆ ∞

d−γ

(
K − S0e

−σ
√
Ty+(r−q+ω)T−σ

√
Tγ
)
fZ (y) dy (56)

= bid−γ(P ).

Summarizing, the bid price of a call option and the ask price of a put op-
tion are equal to the risk-neutral prices of a call and a put option respectively,
replacing the dividend yield q of the stock by q + σγ√

T
. The ask price of a call

option and the bid price of a put option are equal to risk-neutral price of a call
and a put option respectively, replacing the dividend yield by q − σγ√

T
.

We provide two examples where Equation (52) can be calculated explicitly.

Example 17.2. As already mentioned by Madan and Schoutens (2016a, Exam-
ple 5.5), assuming a Black-Scholes setting, i.e. Z is standard normal distributed
with distribution function Φ and ω = − 1

2σ
2 and using the WANG-transform,

leads to the following formulas for the bid price of a call option and a put option

bidWANG(C) = S0e
−
(
q+ γσ√

T

)
TΦ (d1 − γ) − e−rTKΦ (d2 − γ) (57)

bidWANG(P ) = e−rTKΦ (−d2 − γ) − S0e
−
(
q− γσ√

T

)
TΦ (−d1 − γ) , (58)

where

d1 =
log
(
S0
K

)
+
(
r − q + σ2

2

)
T

σ
√
T

and d2 = d1 −σ
√
T are defined as in the classical Black-Scholes model. The ask

prices are equal to the bid prices, replacing γ by −γ. For γ = 0, we obtain the
classical Black-Scholes formula.

The Laplace distribution is particularly interesting because mathematically
it is even easier to handle than the normal distribution and it has fatter tails.
While the logarithm of the density of the normal distribution decays quadrat-
ically, the logarithm of the Laplace density decreases linearly. Thus using the
Laplace distribution instead of the normal distribution can overcome some of
the criticism of the Black-Scholes model.

Example 17.3. Let T > 0 and let Z be Laplace distributed with mean zero
and variance 1. In particular, Z has density

fZ(x) = 1√
2
e−

√
2|x|.

Let us use the Laplace distortion as defined in Example 12.13 and assume

σ2T < 2

and let
ω = 1

T
log
(

1 − 1
2
σ2T

)
,
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which makes the discounted underlying in Equation (49) a martingale. See
also Madan (2016a) for the use of the Laplace distribution in pricing European
options. Note that the integral in Equation (52) is infinite if σ2T ≥ 2, indepen-
dently of the choice of ω. We should not worry too much about this: from a
practical point of view, the maturity T and volatility σ usually do not exceed
the limit, i.e. σ2T < 2. E.g. if we look at a time-horizon of less then eight
years and a yearly volatility of 50% or less, we are well below the limit. From
a mathematical point of view, we know by Equation (50) that the expectation
of ST under the equivalent martingale measure must be finite, in particular it
holds

E (ST ) < ∞.

This is equivalent to E
(
eσ

√
TZ
)
< ∞. On the other hand it holds

E
(
eσ

√
TZ
)

=
ˆ
R
eσx

1√
2T

e
−

√
2√
T

|x|
dx =

{
∞ , σ

√
T ≥

√
2

2
2−σ2T , σ

√
T <

√
2.

Therefore σ2T < 2 must hold but as

2
2 − σ2T

→ ∞ for σ2T ↗ 2,

the integral may be arbitrary large. Closed-form solutions for bid and ask prices
of European options can be obtained by taking the corresponding closed-form
solutions in Madan (2016a, Section 2.1) and replacing q by q+ γσ√

T
, respectively

by q − γσ√
T

.

17.4 Implied Liquidity (IL)
The concept of implied liquidity has been introduced by Corcuera et al. (2012),
Dhaene et al. (2012) and Albrecher et al. (2013) and Guillaume et al. (2018).
It is similar to the idea of implied volatility and computes implicitly two pa-
rameters γb and γa such that modelled bid and ask prices match real market
prices.

Given some real market data of bid and ask prices of a cash-flow X, we
assume that the equivalent martingale measure Q is chosen, such that the mid
price is equal to the discounted expectation of X under Q. For example if X
is an European option, and the underlying is described by the Black-Scholes
model, one would compute an implied volatility such that the Black-Scholes
price matches the given mid price of the option. Thus we assume the distribution
FX is known and call a non-negative number γb such that bidγb(X), defined
in Equation (45), exactly matches the given market bid-price as the implied
liquidity at the bid-side. We similarly define γa ≥ 0 such that askγa(X) is equal
to the given ask price as the implied liquidity at the ask-side. The pair (γb, γa)
is simply called the implied liquidity (IL).

102



5 10 15 20

1
9
0
0

1
9

5
0

2
0

0
0

2
0
5

0
2
1
0

0

S&P 500 and VIX between 05/08 and 02/09/2015

Time

S
&

P
 5

0
0
 I
n
d
e
x
 L

e
ve

l

1
5

2
0

2
5

3
0

3
5

4
0

V
IX

 i
n
 P

e
rc

e
n
ta

g
e
 P

o
in

ts

VIX

S&P 500

Figure 13: S&P 500 and VIX between August, 5th and September, 2nd 2015.

17.5 Application to real Market Data
We apply both the Black-Scholes model and the Laplace-model from Example
17.2 and 17.3 to bid and ask prices of real option data and compute the IL.
For a time-series of 21 days, between August, 5th and September, 2nd 2015, we
look at 1820 end-of-day bid and ask prices of European plain vanilla call and
put options on the S&P 500 with maturities ranging from about 0.42 to 2.36
years and moneyness between 0.83 and 1.09. The options are obtained from the
Chicago Board Options Exchange.

As shown in Figure 13, the uncertainty of Standard & Poor’s 500 stock
market index rose sharply during that period. On August, 24th, which was
termed “Black Monday” by China’s media due to the China’s stock market
crash, the CBOE Volatility Index (VIX) reached 53.29 points during the day
and closed at 40.74 points. Only a week before, on August, 17th, the VIX
closed at 13.02 points. It is well known that liquidity of stock markets usually
drops, when uncertainty rises. Indeed, while at the beginning of the time-series,
the relative bid-ask spread is less than 1% for at-the-money call options with
maturity of about half a year, it rises to more than 5.6% on August, 24th for
the same type of options. In the following, we are going to compare the relative
bid-ask spread, the IL and the difference between implied bid and ask volatilities.

We compute for each option at each timepoint the Black-Scholes implied
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volatility σBS
Mid and Laplacian implied volatility σL

Mid matching exactly the mid-
price using the classical Black-Scholes formula and the formulas derived by
Madan (2016a, Section 2.1) for the Laplace-model, i.e. the formulas in Equations
(54) and (56) setting γ = 0. We get a typical volatility smile for both models,
even though the Laplacian implied volatility surface is slightly flatter than the
Black-Scholes implied volatility surface.

For each option, at each timepoint and for both models, we use the mid-price
implied volatility as estimate of the volatility in Equation (49) and compute the
IL, (γb, γa) ∈ R+, such that the model bid and ask prices match exactly the
quoted market bid and ask prices, see Section 17.4. For example, the Black-
Scholes bid-price in Equation (57), is equal to the quoted market bid price of a
call option, when using the implied γb and σBS

Mid as input parameters. Note that
for most options γb and γa are almost identical, only for very deep out-of-the
money options the difference between both values is more pronounced.

In industry, traders usually prefer quoting the implied volatility instead of
the mid-price, because the implied volatility is comparable across strikes, matu-
rities and underlying assets. With the same argument, it seems more appropri-
ate to quote the bid-ask spread in terms of the IL because spreads behave in a
non-linear way across strikes, maturities and underlyings while the IL improves
comparability across all three dimensions.

So far traders quote implied bid and ask volatilities and describe the bid-ask
spread implicitly by the difference of the implied bid and ask volatilities. This
procedure needs to be compared to the approach to describe the bid-ask spread
by the IL. Note that while for some options it is not possible to compute the
implied bid volatility, because the bid-price is below the arbitrage-free price,
for all options there exists an implied γb matching the bid-price exactly. We
removed all options from the data set where it is not possible to compute an
implied bid volatility.

In Figure 14, the time-series of mean values γa+γb

2 for the Black-Scholes
model and the Laplace-model are shown for at-the-money call options with ma-
turity of about half a year and are compared to the relative bid-ask spread and
the implied bid-ask volatilities over time. While the relative bid-ask spread rose
from timepoint 12 (August, 20th) to timepoint 14 (August 24th) from 1.2% to
5.6%, hence by the factor 4.87, the IL make a similar move and rose by the fac-
tor 4.81. But the difference between bid and ask implied volatilities changed by
the factor 6.85. Hence describing the bid-ask spread by quoting implied bid and
ask volatilities, overestimates the change in liquidity by about 35%. Looking at
put options instead or analysing options with different maturities or moneyness
levels, gives a similar picture. Figure 15 illustrates the relative difference of four
liquidity measures, respectively between two successive timepoints. The rela-
tive bid-ask spread, the Black-Scholes and the Laplacian IL and the difference
between bid and ask Black-Scholes implied volatilities are compared for at-the-
money and out-of-the-money call and put options with maturities of about half
a year. It is not unusual that quoting the bid-ask spread using implied volatili-
ties overestimates an up or down move in liquidity by 40% and more compared
to the relative bid-ask spread. Only for in-the-money options, all four liquidity
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measures behave similarly. The correlation between the relative bid-ask spread
and γb or γa for the different maturities and option types (call and put), lay be-
tween 0.91 and 0.99 for the Black-Scholes and the Laplace-model. That makes
the IL a more intuitive measure for liquidity than quoting the spread implicitly
by stating implied volatilities for both bid and ask prices.
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Figure 14: Average implied volatility and liquidity over time of ATM-Call op-
tions with maturity varying between 0.42 and 0.55 years and moneyness ranging
between 0.98 and 1.02. Between August, 5th and September, 2nd 2015

105



5 10 15 20

0
1

2
3

OTM −  Put

Time

Diff−Vol
Rel−Spread
Laplace IL
BS IL

5 10 15 20

−
0

.5
0
.5

ATM −  Put

Time

5 10 15 20

−
0

.5
0

.5
1

.5
2
.5

OTM −  Call

Time

5 10 15 20

0
1

2
3

4
ATM −  Call

Time

Figure 15: The Figure shows for call and put options with maturities between
0.42 and 0.55 years and moneyness within the two ranges 0.9-0.95 (OTM) and
0.98-1.02 (ATM), the relative difference of four liquidity measures, respectively
between two successive timepoints. The liquidity measures are: the relative
bid-ask spread (Rel-Spread), the Black-Scholes and the Laplacian IL (BS and
Laplace IL) and the difference between bid and ask Black-Scholes implied volatil-
ities (Diff-Vol).

18 American and Exotic Options in a Market
with Frictions

The main goal of this Section is to prove convergence of bid and ask prices of
different European and American contingent claims in a binomial-type model
with frictions, when the number of trading periods approaches infinity. We
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a21

a22
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a11

a0

1−Ψγ
(1−p)

or Ψγ
(p)

Figure 16: Binomial tree to compute the ask price. The up-move probability
depends on the sorting of the successive nodes.

focus on contingent claims which are monotonically increasing or decreasing
with respect to the underlying, this has a technical reason, see Remark 18.1.
In Section 18.1 we precisely define increasing and decreasing European and
American contingent claims and provide a selection of examples.
Remark 18.1. In a binomial-type model, the bid and ask prices are recursively
defined and can be computed going backwards through a tree. Figure 16 shows
a binomial tree with N = 2 time-steps. The ask prices at the final nodes are
equal to the value of the option at expiration. The ask price at the first node
(today) can be computed going iteratively through the tree using the recursions
(44). For example the ask price a11 can be computed using the two successive
nodes a21 and a22.

a11 =

{
Ψγ(1 − p)a22 + (1 − Ψγ(1 − p))a21 , a21 ≤ a22

(1 − Ψγ(p))a22 + Ψγ(p)a21 , a21 > a22,

where p denotes the up-move probability in a classical binomial model and (Ψγ)
is a FCDF. The formula is deduced from the definition of pricing functional, see
Equation (43). In contrast to the iterative computation of the risk-neutral price
in the classical binomial model, the bid and ask prices depend on the sorting
of the successive nodes. Therefore in this thesis we only prove convergence
for monotone payoffs, which are precisely defined in Definition 18.2. Bid and
ask prices of general payoffs can be computed in the discrete time model going
backwards through the tree and checking at each node the sorting of the two
successive nodes.

18.1 Payoffs
In this Section, we define increasing and decreasing European and American
contingent claims.
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Definition 18.2. A European contingent claim CE is a bounded random vari-
able on (Ω,F), such that there is a measurable function h, with

CE = h(S0, ..., SN ).

The claim is called increasing if

h(x0, ..., xN ) ≥ h(y0, ..., yN ), xi ≥ yi, i = 0, ..., N

and decreasing if

h(x0, ..., xN ) ≤ h(y0, ..., yN ), xi ≥ yi, i = 0, ..., N.

An American contingent claim CA is a bounded adapted process

CA =
(
CAi
)
i=0,..,N ,

such that for each i there is a measurable function hi, with

CAi = hi(S0, ..., Si).

The claim is called increasing if

hi(x0, ..., xi) ≥ hi(y0, ..., yi), xk ≥ yk, i = 0, ..., N, , k = 0, ..., i

and decreasing if

hi(x0, ..., xi) ≤ hi(y0, ..., yi), xk ≥ yk, i = 0, ..., N, , k = 0, ..., i.

A European claim CE can be interpreted as a random payoff at maturity T .
For each i, the random variable CAi is interpreted as the payoff of the American
contingent claim if the claim is exercised after i trading periods. We assume
the American option is cash-settled, and the reference price is the process (Si).
If the holder of an American option exercises the option early after i trading
periods, she will receive the amount hi(S0, ..., Si), which is independent of the
current bid-ask spread or the processes

(
Sbi
)

and (Sai ). This may in particular
hold for cash-settled index options and it holds approximately for options with
physically delivery if the transaction costs of trading the stock are small. Similar
to European contingent claims, see Equation (44), bid and ask prices of an
American contingent claim CA can be defined recursively, incorporating the
possibility of an early exercise:

bidN (CA) = askN (CA) = CAN ,

bidi(CA) = CAi ∨ −pγN

i (−bidi+1(CA)), i = 0, .., N − 1, (59)
and aski(CA) = CAi ∨ pγN

i (aski+1(CA)), i = 0, .., N − 1.

Let Ξ be the set all American contingent claims. To simplify notation, the
operators assigning bid and ask prices to American contingent claims

bidi : Ξ → L∞
i and aski : Ξ → L∞

i ,
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have the same names as the operators describing prices of European contingent
claims, which can be seen as functionals from L∞ to L∞

i .
We provide some examples of European and American contingent claims.

Let K ≥ 0 be a strike price and B ≥ 0 be a barrier. By N we denote the time,
the option is exercised. If N ∈ {0, ..., N} can be chosen by the holder of the
option, we speak of an American contingent claim, exercised at time N . If only
N = N is allowed, i.e. the option can only be exercised at maturity, we speak
of a European contingent claim.

Example 18.3. The following derivatives are increasing contingent claims.

• Call option: CCall = (SN −K)+

• Lookback call option: CLbCall =
(

max
i∈{0,...,N }

Si −K

)+

• Asian call option: CAsianCall =
(

1
N
∑N
i=0 Si −K

)+

• Barrier up-and-in call option:

CUICall =

(SN −K)+ , max
i∈{0,...,N }

Si ≥ B

0, otherwise

• Barrier down-and-out call option:

CDOCall =

(SN −K)+ , min
i∈{0,...,N }

Si > B

0, otherwise

Example 18.4. Decreasing payoffs are for example:

• Put option: CCall = (K − SN )+

• Lookback put option: CLbPut =
(
K − max

i∈{0,...,N }
Si

)+

• Asian put option: CAsianPut =
(
K − 1

N
∑N
i=0 Si

)+

• Barrier up-and-out put option:

CUOPut =

(K − SN )+ , max
i∈{0,...,N }

Si < B

0, otherwise.

Example 18.5. The following two derivatives are neither increasing nor de-
creasing payoffs.
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• Barrier up-and-out call option

CUOCall =

(SN −K)+ , max
i∈{0,...,N }

Si < B

0, otherwise

• Barrier down-and-in call option

CDICall =

(SN −K)+ , min
i∈{0,...,N }

Si ≤ B

0, otherwise.

18.2 Classical Binomial Model
In this Section, we recall the classical binomial model. Let T > 0 be some
time-horizon and assume there are N ∈ N trading periods between [0, T ], each
trading period is of length T

N . There is a riskless bond

B
(N)
i = (1 + rN )i, i = 0, 1, ..., N,

paying interest
rN = rT

N
> −1

in each trading period and just one risky asset, paying dividends

qN = qT

N

in each period, and whose price process takes the form

S
(N)
i = S0

i∏
k=1

(1 +R
(N)
k ), i = 1, 2, ..., N,

where S0 > 0, and the returns

R
(N)
i =

S
(N)
i − S

(N)
i−1

S
(N)
i−1

, i = 1, 2, ..., N

are random variables with values in {aN , bN} ⊂ R, such that

dN := 1 + aN = e−σ
√

T
N and uN := 1 + bN = eσ

√
T
N . (60)

The market is arbitrage-free and complete if

−1 < aN < rN − qN < bN ,

which holds for N large enough. In this case, the returns R(N)
1 , ..., R

(N)
N are

independent, their distributions are characterized by

P ∗
N (R(N)

i = bN ) := p∗
N := pqN + φ(N), i = 1, 2, ..., N, (61)
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where P ∗
N is the unique risk neutral measure, φ(N) ∈ o

(
1√
N

)
and

pqN := 1
2

+ r − q

2σ

√
T

N
. (62)

We say the classical binomial model is characterized by the tuple (S0, r, q, σ, T,N).
Let C(N)

E be a possibly path-dependent European contingent claim. The
discounted claim

H
(N)
E =

C
(N)
E

B
(N)
N

can be written as
H

(N)
E = h

(
S

(N)
0 , ..., S

(N)
N

)
(63)

for a suitable function h. The value process in the N th model,

V
(N)
i = EP∗

N

[
H

(N)
E |Fi

]
, i = 1, 2, ..., N,

of a replicating strategy for H(N)
E at time t = iT

N is of the form

V
(N)
i (ω) = v

(N)
i (S0, S1(ω), .., Si(ω)),

where the function v
(N)
i is given by recursion

v
(N)
N (x0, ..., xN ) = h(x0, ..., xN )

v
(N)
i (x0, ..., xi) = (1 − p∗

N ) v(N)
i+1 (x0, ..., xi, xidN )

+p∗
Nv

(N)
i+1 (x0, ..., xi, xiuN ) , i = 0, 1, ..., N − 1,

see e.g. Föllmer and Schied (2011, Proposition 5.41).
On the other hand, dealing with an American contingent claim

C
(N)
A =

(
C

(N)
A,i

)
i=0,..,N

,

and the corresponding discounted claim

H
(N)
A,i =

C
(N)
A,i

B
(N)
i

, i = 0, .., N,

for each i = 0, 1, .., N there is a suitable function hi such that

H
(N)
A,i = hi(S0, ..., Si).

By no-arbitrage-arguments, the value process (Vi)i=0,...,N of a replicating strat-
egy for H(N)

A can be found by recursion, compare with Föllmer and Schied (2011,
Chapter 6):

VN := H
(N)
A,N , Vi := H

(N)
A,i ∨ EP∗

N
[Vi+1| Fi] , i = 0, .., N − 1.
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Hence, there are functions v(N)
i such that

Vi = v
(N)
i (S0, ..., Si), i = 0, ..., N,

namely

v
(N)
N (x0, ..., xN ) = hN (x0, ..., xN )

v
(N)
i (x0, ..., xi) = hi(x0, ..., xi) ∨

{
(1 − p∗

N ) v(N)
i+1 (x0, ..., xi, xidN )

+p∗
Nv

(N)
i+1 (x0, ..., xi, xiuN )

}
, i = 0, 1, ..., N − 1.

It is well known that in a classical binomial-tree model, which is characterized
by the tuple (S0, r, q, σ, T,N), the risk-neutral price

π(N)(C(N), S0, r, q, σ, T ) := v
(N)
0 (S0) (64)

of a European or American contingent claim C(N) = C
(N)
E or C(N) = C

(N)
A ,

converge for many products as N → ∞. If the limit exists, we define

π(C, S0, r, q, σ, T ) := lim
N→∞

π(N)(C(N), S0, r, q, σ, T ).

Convergence of plain vanilla European options to the Black-Scholes price
are discussed in Cox et al. (1979). For plain vanilla American options we refer
to Amin and Khanna (1994), for European and American Asian options and
lookback options and some other path-dependent options, see Jiang and Dai
(2004). For a proof of convergence for European barrier option, see Carbone
(2004) and Lin and Palmer (2013) and references therein. Those convergence
results can directly be applied to prove convergence of bid and ask prices as
Theorem 18.6 shows.

18.3 Convergence of Bid and Ask Prices
In this Section we prove our main result and show that bid and ask prices of
European or American contingent claims converge, if the risk-neutral price of the
claim converges in the classical binomial model. The theorem has an important
practical implication: is states that bid and ask prices of monotone payoffs, in
particular plain vanilla European and American options, can be computed using
the classical Black-Scholes model with an adjusted drift. Bid and ask prices of
such options can therefore be computed very fast.

Theorem 18.6. Let (Ψγ)γ≥0 be a FCDF fulfilling Assumptions [E] and [A] of
Definition 12.7. Let a classical binomial-tree model be given, which is charac-
terized by the tuple

(S0, r, q, σ, T,N).
Let C(N) be an increasing (decreasing) European or American contingent claim.
Let γ ≥ 0 and

γN := γ

√
T

N
. (65)
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Define bid and ask prices of a European claim by recursions (44) and of an
American claim by recursions (59). If risk-neutral price, defined via Equation
(64),

π(N)(C(N), S0, r, q̃, σ, T )
converges in the classical binomial model for all dividends

q̃ ∈ [q − σγ, q + σγ]

to some non-negative number π(C, S0, r, q̃, σ), then the ask (bid) of the contin-
gent claim converges to

lim
N→∞

π(N)(C(N), S0, r, q − σγ, σ)

and the bid (ask) price converges to

lim
N→∞

π(N)(C(N), S0, r, q + σγ, σ).

Proof. We first assume C(N) models a European contingent claim and can be
described by a function h as in Equation (63). Let uN , dN and pqN be defined
as in Section 18.2. Then it holds for the processes describing the ask price
(Ai)i=0,1,..,N and the bid price (Bi)i=0,1,..,N of C(N),

Ai(ω) = ai((S0, S1(ω), .., Si(ω)),

and
Bi(ω) = bi((S0, S1(ω), .., Si(ω)),

where the functions ai and bi are recursively defined:

bN (x0, ..., xN ) = aN (x0, ..., xN ) = h(x0, ..., xN )

and for i = 0, 1, .., N − 1, if the European contingent claim is increasing

ai(x0, ..., xi) = (1 − ΨγN (pqN + φ(N))) ai+1 (x0, ..., xi, xidN )
+ΨγN (pqN + φ(N)) ai+1 (x0, ..., xi, xiuN )

and

bi(x0, ..., xi) = ΨγN (1 − (pqN + φ(N))) bi+1 (x0, ..., xi, xidN )
+ (1 − ΨγN (1 − (pqN + φ(N)))) bi+1 (x0, ..., xi, xiuN ) .

If h defines a decreasing European contingent claim, it follows for i = 0, .., N−1,

ai(x0, ..., xi) = ΨγN (1 − (pqN + φ(N))) ai+1 (x0, ..., xi, xidN )
+ (1 − ΨγN (1 − (pqN + φ(N)))) ai+1 (x0, ..., xi, xiuN )

and

bi(x0, ..., xi) = (1 − ΨγN (pqN + φ(N))) bi+1 (x0, ..., xi, xidN )
+ΨγN (pqN + φ(N)) bi+1 (x0, ..., xi, xiuN ) .
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The ask (bid) price of an increasing European payoff and the bid (ask) price
of a decreasing European payoff at level γN ≥ 0 are exactly defined as the
risk-neutral price in the classical binomial model, when replacing the up-move
probability in Equation (61), i.e,

pqN + φ(N),

by
ΨγN (pqN + φ(N)) ,

respectively by
(1 − ΨγN (1 − (pqN + φ(N)))) .

This observation can directly be carried forward to American contingent claims
and is explained by the structure of the binomial model and the recursive defi-
nition of bid and ask prices.

By Assumption [A], there is a sequence φ̃(N) ∈ o
(

1√
N

)
such that

ΨγN (pqN + φ(N)) = 1
2

+ r − q

2σ

√
T

N
+ γ

2

√
T

N
+ φ̃(N)

= 1
2

+ r − (q − σγ)
2σ

√
T

N
+ φ̃(N)

= pq−σγ
N + φ̃(N).

Similarly it holds for a suitable φ̂(N) ∈ o
(

1√
N

)
,

1 − ΨγN (1 − (pqN + φ(N))) = pq+σγ
N + φ̂(N).

Hence the up-move probability of the distorted binomial model describing bid
and ask prices can be expressed as in the classical binomial model with an
adjusted dividend yield:

1
2

+ r − (q ± σγ)
2σ

√
T

N
+ o

(
1√
N

)
. (66)

As the up and down moves uN and dN remain unchanged compared to the
classical binomial model, we conclude.

Remark 18.7. A look at the proof of Theorem 18.6 shows that one could define
γN in Equation (65) arbitrarily, as long as it converges to zero as fast as 1√

N
.

Under our particular choice, γ can be interpreted as a drift-adjustment via the
dividend yield in the continuous time limit scaled by the volatility. The drift
adjustment is

q̂T = (q ± σγ)T.

In a static setting we obtained similar formulas for bid and ask prices if the
log-returns are normal distributed, see Example 17.2. In a static setting the
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term q ± σγ√
T

appears. The different scaling is mainly convention. We could
match the formulas in continuous and in static time by either rescaling γN , see
Equation (65) or by replacing in the static setting Equation (51) by the FCDF

Ψγ
Z(u) = FZ

(
F−1
Z (u) + γ

√
T
)
.

Remark 18.8. In the binomial model, the underlying is modelled by a bounded
stochastic process. Therefore there is no restriction of the definition of bid and
ask prices via recursions (44) and (59) requiring the contingent claims to be
bounded. In particular call options are bounded in discrete time. Bid and ask
prices of a contingent claim form a two-dimensional sequence with the natural
numbers 1, 2, 3, .. as index set. The index N corresponds to the N th binomial
model. In Theorem 18.6, we prove convergence of such a sequence. Hence The-
orem 18.6 says that bid and ask prices of a possibly unbounded contingent claim
like a European call option in continuous time can be approximated arbitrary
closely by the bid and ask prices of a bounded contingent claim in discrete time.

18.4 European Plain Vanilla Options
In the classical Black-Scholes world, there exist closed-form solutions for the
risk-neutral price of European plain vanilla and barrier options. By Theorem
18.6, we obtain closed-form solutions for bid and ask prices of European plain
vanilla and barrier options, which are stated in the next corollaries, by taking
the corresponding closed-form solutions for the risk-neutral price and adjusting
the dividend yield.

The Black-Scholes prices of plain vanilla European call and put options with
strike K and maturity T are given in closed-form and denoted by

BSCall(S0, T,K, r, q, σ) = S0e
−qTΦ (d1) − e−rTKΦ (d2)

and
BSPut(S0, T,K, r, q, σ) = e−rTKΦ (−d2) − S0e

−qTΦ (−d1) ,

where

d1 =
logS0

K +
(
r − q + 1

2σ
2)T

σ
√
T

and d2 = d1 − σ
√
T and Φ denotes the distribution function of the standard

normal distribution, see Black and Scholes (1973).

Corollary 18.9. Under the notation of Theorem 18.6, let C(N) be a European
plain vanilla option with strike K > 0 and maturity T . Bid and ask prices of a
put option converge to

bidγPut = BSPut(S0, T,K, r, q − σγ, σ)

and
askγPut = BSPut(S0, T,K, r, q + σγ, σ).
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Bid and ask prices of a call option converge to

bidγCall = BSCall(S0, T,K, r, q + σγ, σ)

and
askγCall = BSCall(S0, T,K, r, q − σγ, σ).

Figure 17 shows the relative bid-ask spread surface of European call options
over strikes and maturities. Long term options and options being deep out-of-
the money are less liquid, the relative bid-ask spread is greater.
Remark 18.10. Similarly to the existence of an implied volatility smile, there
exist an implied liquidity smile. Computing γ implicitly from given bid and
ask prices of options, Corcuera et al. (2012) show that there is a non-linear
dependence of γ, with respect to the term structure and the moneyness of the
option surface. In particular, we cannot expect to predict the bid-ask spread of
one option from given bid and ask prices of another option, if the corresponding
strikes and maturities are too distant from each other.

18.5 Path-dependent and American Options
In a classical Black-Scholes framework, there exist closed-form solution for many
barrier options, see Rubinstein and Reiner (1991) and Cheng (2003). For ex-
ample the arbitrage-free price of an up-and-in barrier call option with maturity
T , strike K and barrier B > K is

BSUICall(S0, T,K,B, r, q, σ) = S0e
−qTΦ(x1) −Ke−rTΦ(x1 − σ

√
T )

−S0e
−qT

(
B

S0

)2m

(Φ(−y) − Φ(−y1))

+Ke−rT
(
B

S0

)2m−2

(Φ(−y + σ
√
T )

−Φ(−y1 + σ
√
T )),

where

m =
r − q + 1

2σ
2

σ2 , y =
log
(
B2

S0K

)
σ

√
T

+mσ
√
T ,

x1 =
log
(
S0
B

)
σ

√
T

+mσ
√
T , y1 =

log
(
B
S0

)
σ

√
T

+mσ
√
T .

Corollary 18.11. Under the notation of Theorem 18.6, let C(N) be an up-and-
in barrier call option with maturity T , strike K > 0, and barrier B > K. The
bid price converges to

bidγUICall = BSUICall(S0, T,K,B, r, q + σγ, σ)

and the ask converges to

askγUICall = BSUICall(S0, T,K,B, r, q − σγ, σ).
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Figure 17: Relative bid-ask spread surface for European plain vanilla call op-
tions. We use the following parameters: the underlying is equal to 100, the
strikes vary between 50 and 150, annual interest rates are set to 0.01, the divi-
dend yield is assumed to be 0.03, the time left to maturity lays in the interval
[0, 2], the annual volatility is 0.2 and the annual γ is set to 0.05.
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In the following, we treat bid prices of American put options but the findings
can be transferred directly to ask prices of American put options and American
call options as well. Let the risk-neutral Black-Scholes prices of a plain vanilla
American put option with strike K and maturity T be denoted by

BSA
Put(S0, T,K, r, q, σ).

There are no closed-form solutions for American plain vanilla options in a classi-
cal Black-Scholes framework, but there exist efficient numerical methods to ap-
proximate BSA

Put, see for example Barone-Adesi and Whaley (1987) and Bjerk-
sund and Stensland (1993). We denote the numerical approximation by

B̃S
A
Put(S0, T,K, r, q, σ)

and the error by

εqPut :=
∣∣∣BSA

Put(S0, T,K, r, q, σ) − B̃S
A
Put(S0, T,K, r, q, σ)

∣∣∣ .
The next corollary follows immediately:

Corollary 18.12. Under the notation of Theorem 18.6, let C(N) be an Amer-
ican plain vanilla put option with strike K > 0 and maturity T . The bid price
converge to

bidγPut = BSA
Put(S0, T,K, r, q − σγ, σ).

The error approximating the bid price using B̃S
A
Put as an estimate for BSA

Put is
less or equal to εq−σγ

Put .

The corollary states the following: the bid price of an American put option on
a stock with dividend yield q is equal to the risk-neutral price of an American put
option but on a stock with dividend yield q−σγ. The bid price directly inherits
the numerical error from the approximation of the the risk-neutral price of the
American option by some numeric algorithm. A similar corollary could easily
be stated for other options, like Asian options, which do not have closed-form
solutions in the classical Black-Scholes model and can only be approximated
for example with Monte Carlo methods. Bid and ask prices can then also be
computed using Monte Carlo methods and the absolute error does not increase
compared to classical risk-neutral pricing.

18.6 Numeric Simulations
In this Section, we try to investigate how fast the recursively defined bid and
ask prices converge. We make two approximations: we approximate the concave
distortion function by a linear function, see Assumption [A] of Definition 12.7
and we approximate the Black-Scholes model by a binomial tree. The error of
the first approximation approaches zero faster than 1√

N
, see Equation (66).

The convergence rate of the classical binomial model is well studied in lit-
erature for many products: Heston and Zhou (2000) show that the risk-neutral
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price of a plain vanilla European call option converges at least as fast as 1√
N

.
Lamberton (1998) prove that the risk-neutral price of an American put option
converges from below and from above at least as fast as N− 2

3 and N− 3
4 re-

spectively. Leisen and Reimer (1996) and Leisen (1998) analysed three different
approaches to build a binomial tree, in particular the definitions for the returns
of one trading period differ. They show that European plain vanilla options con-
verge at least as fast as 1

N but American put options may only converges from
below as fast as 1√

N
depending on the exact tree definition. Lin and Palmer

(2013) treat barrier options.
In our setting the up-move probability to obtain bid and ask prices has

only asymptotically the martingale property, which makes it difficult to directly
apply convergence results for classical binomial trees to our framework.

We therefore rely on simulations and compute bid and ask prices of a Euro-
pean call option, an American put option and a European up-and-in call option
using recursions (44) and (59) for time-steps ranging from N ∈ {5, .., 2000}. We
compare the tree-prices to their continuous counterpart, which can be obtained
via the Corollaries 18.9, 18.11 and 18.12. Slightly abusing notation, we denote
by eN the absolute difference (error) between the bid or ask price of a contin-
gent claim C(N) in the N th binomial model and limit of the bid and ask price.
We say the sequence of errors converges with order ρ > 0, if there is a constant
κ > 0 such that

∀N ∈ N : eN ≤ κ

Nρ
.

The order of convergence can be indicated straightforwardly by a simulation,
see Leisen and Reimer (1996). As

log
( κ

Nρ

)
= log(κ) − ρ log(N),

the negative slope of a straight line obtained from a log-log plot of the errors eN
against the refinement N can be used as an indicator for ρ. Figure 18 indicates
an order of convergence between 1 and 1

2 of the recursions (44) and (59) for
different European and American options.

18.7 Application to real Market Data
In Section 17.4 the concept of implied liquidity (IL) is defined. It is similar to
the idea of implied volatility and returns two implicitly computed parameters
γb and γa such that modelled bid and ask prices match real market prices. The
benefits of quoting the IL instead of bid-ask spreads are comparable to the
benefits of quoting implied volatilities instead of mid-prices: in principle the IL
can be constant across strikes, maturities and underlyings and hence makes it
possible to compare bid-ask spreads across all three dimensions.

For a time-series of two days, February, 2nd and February, 5th, 2018, we ob-
tained end of day bid and ask prices of 80 plain vanilla, at-the-money American
put and call options on the S&P500, or rather the SPDR S&P 500 ETF Trust,
an exchange traded fund replicating the S&P500, with maturities ranging from
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Figure 18: Log-log plot of the binomial tree approximation error for a European
call option, an American put option and an up-and-in barrier option with barrier
B = 110. All option have the strike K = 100 and the maturity is set to one
year. The stock starts in S0 = 100, annual interest rates are set to 0.01, the
dividend yield is assumed to be 0.03, the annual volatility is 0.2 and the annual
γ is set to 0.05. N goes in non-equidistant steps from 5 to 2000. The up-and-in
barrier option is only simulated up to N = 1000.
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Change in Liquidity, ATM American Options
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Figure 19: This Figure describes the change of the relative bid-ask spread, the
IL and the difference of implied bid and ask volatilities from February, 2nd
to February, 5th of various American at-the-money put and call options by a
multiplicative factor. Maturities are measured in months.

about 3 to 8 month. The option prices were obtained from the Chicago Board
Options Exchange and can be found in Table 10 in the appendix.

The CBOE Volatility Index (VIX), tracking short-term market volatility,
jumped from 17.31 points on February, 2nd to 37.32 points on February, 5th,
thus by 116%, which is the highest daily relative change recorded so far. The
S&P500 lost about 4% between the two dates. It is well-known that liquidity
dries up, when uncertainty in financial market rises. Therefore the chosen dates
are well suited to analyse how different measures for the bid-ask spread behave,
when liquidity changes.

For each American option, on both dates, we first compute an implied Black-
Scholes volatility σMid matching exactly the mid-price. Then we use the mid-
price implied volatility and compute the IL, (γb, γa) ∈ R2

+, such that the mod-
elled bid and ask prices match exactly the quoted market bid and ask prices. In
particular for an American call option C, we solve numerically

bidquoted market price(C) = BSA
Call(S0, T,K, r, q + σMidγb, σMid),

121



for γb. The function BSA
Call(S0, T,K, r, q, σ) describes the risk-neutral price of

an American call option in a Black-Scholes setting with strike K and maturity T
on a stock with initial value S0, volatility σ and paying a continuously dividend
yield q. The risk-free interest rate is denoted by r. The parameter γa for the call
option and the IL (γ̃b, γ̃a) of put options can be found analogously, see Theorem
18.6. For most options γb and γa are almost identical.

The average relative bid-ask spread of the American option data set is 1.6%
on February, 2nd and 6.6% on February, 5th. The relative bid-ask spread
changed by the factor 4.1. The average IL γa+γb

2 , changed from an average
value of 0.011 for all options on February, 2nd to 0.043 on February, 5th, which
corresponds to a change by the factor 3.9. The average difference of implied bid
and ask volatilities on the other hand, rose by the factor 6.1, hence about 49%
more than the relative bid-ask spread. In Figure 19, we show the multiplicative
factor describing the change of the relative bid-ask spread, the IL and the dif-
ference of implied bid and ask volatilities from February, 2nd to February 5th
separately for put and call options and different maturities.

The overall picture is the following: a change in liquidity of American op-
tions, due to a rise in uncertainty in the market and measured by the change
of the relative bid-ask spread, is described by the IL very well. On the other
hand, an overestimation of the change of liquidity by 50% and more are no
exceptions, when describing the bid-ask spread by the classical way of quoting
implied bid and ask volatilities. Our findings for American options are in line
with a similar empirical study for European options done by Guillaume et al.
(2018), see Section 17.5.

19 Conclusion
We model a financial market with frictions in discrete time using a pricing
functional, which is defined recursively via coherent risk measures. The risk
measures are defined via a family of concave distortion functions (FCDF). Eco-
nomically, the discrete time market model with frictions is justified in Jouini
and Kallal (1995, 2001) and Jouini (2000).

The discrete time model contains two special cases: the static case where we
model the log-returns by a normal or a Laplace distribution, and a binomial-
type model where it is possible to prove convergence for many European and
American path-dependent options when the number of trading periods tend to
infinity. We call the limit of the binomial-type model extended Black-Scholes
model.

In all three settings (static normal, static Laplace or extended Black-Scholes),
we obtain closed-form solutions for bid and ask prices of European plain vanilla
options. Bid and ask prices of European options can be calculated as the risk
neutral price of the same option but on an underlying with an adjusted divi-
dend yield. The bid-ask spread depends on an additional parameter γ ≥ 0. The
greater γ, the greater the bid-ask spread. For γ = 0, the spread is equal to zero
and bid and ask prices coincide with the risk-neutral price of the option.
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The static case is interesting because it allows a more flexible distribution
for the log-returns. In particular, the Laplace distribution has fatter tails than
the normal distribution, which appears in the asymptotic case of the binomial-
type model, and might therefore be better suited to model log-returns. But the
flexibility of the static model is reduced because the FCDF cannot be chosen
arbitrary, we assumed that the FCDF is induced by the distribution function
of the log-returns. In Section 12.1 we mentioned some desirable properties
that distortion functions should have, in particular the first derivative of the
distortion function should approach infinity at zero and should be equal to zero
at one. If log-returns are assumed to be normal distributed, we would use the
WANG-transform which has all desirable properties. However those properties
are not satisfied by the family of distortion functions induced by the Laplace
distribution.

On the other hand, we are motivated to study convergence of bid and ask
price in the binomial-type model for American or European options to find fast
numerical methods to compute those prices. We have shown that bid and ask
prices of monotone payoffs, for example European or American plain vanilla,
Asian, lookback and some barrier options, can be computed as fast as the risk-
neutral price of such an option in a classical Black-Scholes framework. In con-
trast to the static model, the particular choice of the FCDF to model bid and
ask prices in discrete time, does not matter in the limit.

The three new models (normal, Laplace or extended Black-Scholes) may find
a similar application in practise as the classical Black-Scholes model. Trader
usually prefer to quote implied volatilities instead of prices, because there are
many nonlinearities in prices making comparisons across strikes, maturities
and underlying assets difficult to understand. In principle volatilities could be
constant across all three dimensions, hence the preference for quoting implied
volatilities.

With the same argument it might be more convenient to quote an implied
liquidity instead of the bid-ask spread. It is then possible to compare bid-ask
spreads across different strikes, maturities and underlyings. To demonstrate
this idea we conducted two empirical studies: we computed implicitly two pa-
rameters γb and γa such that modelled bid and ask prices match real market
prices. We call the tuple (γb, γa) implied liquidity (IL). We did this for a set
of European options using the static normal and Laplace model and for a set
of American options using the extended Black-Scholes model. In principle the
tuple (γb, γa) could be constant across strikes, maturities and underlyings and
hence makes it possible to compare bid-ask spreads across all three dimensions.

Up to now, traders usually describe bid-ask spreads by quoting both bid and
ask implied volatilities. There are several advantages using the IL instead: it
is not always possible to compute an implied bid volatility, because bid prices
of options sometimes lay below the theoretical arbitrage-free price, i.e. are
lower than the risk-neutral price of an option on a stock with volatility zero.
The concept of IL overcomes this inconsistency. When uncertainty in financial
market rises and liquidity dries up, looking only at the difference of Black-
Scholes implied bid and ask volatilities often overestimates a change in liquidity
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by 40% and more, because the difference of the implied volatilities changes by a
higher factor than the relative bid-ask spread. However, the correlation between
the relative bid-ask spread and the IL is strong, which makes the IL an intuitive
measure for liquidity.

With respect to the IL, there are almost no differences between the nor-
mal and Laplace static models. We therefore recommend to us the extended
Black-Scholes model to compute the IL in practise, mainly because it is a con-
tinuous time model and the Black-Scholes model is well known and understood
in industry.
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Part V

Outlook and Future Research
In Chapter II we calibrate six advanced stock price model to a time series
of European plain vanilla options, simulate barrier option prices via a Monte
Carlo simulation and compare the simulated prices to real market data of barrier
options. For our particular data set, Lévy models with stochastic time-change
and leverage do not reproduce barrier option data very well. It would therefore
be interesting to look at other models. So far we model the time-change of Lévy
processes by a CIR process. The time-change may as well be modelled by a
linear combination of Ornstein–Uhlenbeck processes or by an integrated Inverse
Gaussian process.

Future research need to be done to include different and longer time series
and to analyse other exotic options than barrier options. In Chapter II we
investigate empirical which advanced stock price model returns the smallest
pricing error. An interesting research question is which advanced stock price
model has the smallest hedging error for exotic options.

In Chapter III we analyse concave distortion functions, which play an impor-
tant role in Chapter IV to define bid and ask prices in a market with frictions.
A concave distortion function is a concave function mapping the unity interval
onto itself and is used to distort distribution functions. We prove that a family
of concave distortions (FCDF) satisfying a certain translation equation can be
represented by a distribution function.

There are FCDF which only satisfy the translation equation after a cer-
tain reparametrization. In Proposition 13.9 we prove that if there exist a
reparametrization of a FCDF satisfying the translation equation, then the orig-
inal FCDF is permutable. From a mathematical point of view, it would be in-
teresting to see whether the reverse also holds true, i.e. if a permutable FCDF
can be reparameterized into a FCDF satisfying a translation equation and hence
can be represented by a distribution function.

A natural question for a future work is which properties of a family of coher-
ent risk measures, induced by a FCDF, are implied by the translation equation?
Beside the application in Section 13.2, what is the precise economic and actu-
arial meaning of the translation equation?

In Chapter IV we construct a binomial-type market model with frictions,
which may model a market with transaction costs. Bid and ask prices are
recursively defined by a pricing functional, which is induced by a sequence of
time-consistent coherent risk measures. We are able to prove that bid and
ask prices converge for many European or American possible path-dependent
options. The limit of the bid and ask prices of European plain vanilla options
can be expressed by the Black-Scholes formula with an adjusted dividend yield.
Both the volatility and the liquidity parameter are assumed to be constant
over time. It would be interesting to model both parameters by mean-reverting
stochastic processes. We leave these extensions for future research.
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By Soner et al. (1995), the least expensive superreplication strategy domi-
nating a European call in a Black-Scholes model with proportional transaction
costs is the trivial strategy of buying one share and holding it till maturity. The
ask price of a call option in our market model with frictions presented in Chap-
ter IV lays significantly below the price of this trivial superreplication strategy.
However, our market model with frictions is not a simple proportional trans-
action costs model because at maturity the bid-ask spread of the underlying is
zero. Nevertheless, the results by Soner et al. (1995) indicate that an investor
who agrees to buy the option for the ask price is ready to take some residual
risks. In a future research we would like quantify that risk using a coherent risk-
measure ρ for instance. Results from Xu (2006) and Föllmer and Schied (2011,
Section 8) might help to answer this question. But both authors considered a
frictionless market, while our market model contains frictions.
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Part VI

Appendix
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2013-2015: Manager at the HSBC, Risk Department, Dusseldorf, Germany.

2011-2013: Master in Mathematics (with honors), TU Braunschweig, Germany.
Major field of study: stochastics.
Erasmus study at Queen Mary University of London, UK, from Sept.
2011 till Dec. 2011.

2008-2011: Bachelor in Mathematics, TU Braunschweig, Germany. Major field
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Erasmus study at Universidad de la Rioja, Spain, from Sept. 2010
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5Wim Schoutens is a Professor in Financial Engineering at the KU Leuven. He has exten-
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pean Commission, has worked for the IMF and is the author of several books on quantitative
finance.
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American Option Data

Today Maturity Strike Bid-call Ask-call Bid-put Ask-put
02/02/2018 18/05/2018 273 10.1 10.25 6.99 7.14
02/02/2018 15/06/2018 273 11.23 11.39 8.15 8.27
02/02/2018 20/07/2018 273 12.32 12.51 9.29 9.48
02/02/2018 21/09/2018 273 14.85 15.08 11.32 11.51
02/02/2018 18/05/2018 274 9.42 9.57 7.32 7.46
02/02/2018 15/06/2018 274 10.55 10.7 8.48 8.61
02/02/2018 20/07/2018 274 11.66 11.84 9.64 9.83
02/02/2018 21/09/2018 274 14.21 14.41 11.66 11.86
02/02/2018 18/05/2018 275 8.77 8.9 7.67 7.82
02/02/2018 15/06/2018 275 9.9 10.03 8.84 8.97
02/02/2018 20/07/2018 275 11.01 11.2 9.99 10.18
02/02/2018 21/09/2018 275 13.56 13.76 12.02 12.2
02/02/2018 18/05/2018 276 8.13 8.26 8.03 8.2
02/02/2018 15/06/2018 276 9.25 9.37 9.2 9.33
02/02/2018 20/07/2018 276 10.38 10.55 10.35 10.55
02/02/2018 21/09/2018 276 12.93 13.11 12.38 12.57
02/02/2018 18/05/2018 277 7.51 7.64 8.42 8.58
02/02/2018 15/06/2018 277 8.62 8.74 9.59 9.72
02/02/2018 20/07/2018 277 9.75 9.92 10.74 10.94
02/02/2018 21/09/2018 277 12.29 12.48 12.75 12.95
05/02/2018 18/05/2018 262 13.07 13.44 12.69 13.15
05/02/2018 15/06/2018 262 13.83 15.2 13.76 14.11
05/02/2018 20/07/2018 262 14.79 16.48 14.8 15.2
05/02/2018 21/09/2018 262 17.07 18.98 16.62 18.4
05/02/2018 18/05/2018 263 12.42 12.77 13.04 13.49
05/02/2018 15/06/2018 263 13.16 14.52 14.1 14.46
05/02/2018 20/07/2018 263 14.15 15.81 15.14 15.55
05/02/2018 21/09/2018 263 16.44 18.32 16.98 18.79
05/02/2018 18/05/2018 264 11.76 12.11 13.4 13.84
05/02/2018 15/06/2018 264 12.54 13.84 14.46 14.81
05/02/2018 20/07/2018 264 13.52 15.15 15.51 15.91
05/02/2018 21/09/2018 264 15.81 17.65 17.35 19.2
05/02/2018 18/05/2018 265 11.12 11.47 13.76 14.2
05/02/2018 15/06/2018 265 11.92 13.19 14.83 15.18
05/02/2018 20/07/2018 265 12.91 14.5 15.88 16.29
05/02/2018 21/09/2018 265 15.2 17.01 17.73 19.63
05/02/2018 18/05/2018 266 10.52 10.83 14.13 14.59
05/02/2018 15/06/2018 266 11.3 12.15 15.2 15.55
05/02/2018 20/07/2018 266 12.32 13.85 16.26 16.67
05/02/2018 21/09/2018 266 14.6 16.37 18.11 20.04

Table 10: End-of day bid and ask prices of the American option data-set.
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Pricing through the Characteristic Function
In Example 2.19, we expressed the price of a European plain vanilla call option
in simple terms. This is possible, because the density of the log-returns in the
Black-Scholes model are known at all times. For most advanced stock price
models, see Chapter II, the density of the log-returns are unknown but the
characteristic function of the log-returns are usually given in analytic form.
The Fourier transform can then by used to compute the call price of an option
with strike K and maturity T . Let k := log(K), by Carr and Madan (1999),
the call price is given by

C(k, T ) = e−αk 1
π

ℜ
(ˆ ∞

0
e−ivkρT (v)dv

)
, (67)

where α > 0 and φT is the characteristic function of the logarithm of the risky
asset at time T > 0, i.e.

φT (u) = EQ [exp (iu log (ST ))]

and ρT (.) is defined by

ρT (v) = e−rTφT (v − (α+ 1)i)
α2 + α− v2 + i(2α+ 1)v

.

Carr and Madan introduced the scaling term α to make the call pricing func-
tion square integrable, which is necessary to apply the Fourier transform. The
integral appearing in Equation (67) can be computed using the fast Fourier
transform.

The fast Fourier transform (FFT) is used to compute the discrete Fourier
transform very fast. Let x1, .., xN be a sequence of complex numbers. The
discrete Fourier transform of the sequence x1, .., xN is defined by the sequence

x̂n =
N∑
j=1

exp
(

−2πi(j − 1)(n− 1)
N

)
xj , n = 1, ..., N.

Evaluating the discrete Fourier transform directly requires O(N2) operations.
The FFT calculates the discrete Fourier transform using only O(N log(N))
operations. N should be of power of two, because most FFT algorithms split the
problem at each recursion into two parts, see e.g Van Loan (1992) for numerical
aspects of the FFT.

Simpson’s rule is applied to approximate the integral appearing in Equation
(67), Let

vj = η(j − 1), j = 1, .., N.

It holds

C(k, T ) ≈ e−αk 1
π

ℜ

 N∑
j=1

e−ivjkρT (vj)η
(

3 + (−1)j − δj−1

3

) ,
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where η > 0 is the step-size and N ∈ N being power of two and

δj =

{
1 , j = 0
0 , j > 0.

The integral is approximated by zero in the interval (ηN,∞). Let λ := 2π
Nη and

define
kn = −1

2
Nλ+ λ(n− 1), n = 1, ..., N.

We will see that λ is exactly chosen such that the FFT can be applied. We will
obtain simultaneously prices for the strikes

exp(kn), n = 1, .., N.

The positive constant η has to be chosen small enough such that k ∈ [k1, kN ].
Let

xj := eivj
π
η ρT (vj)η

(
3 + (−1)j − δj−1

3

)
, j = 1, ..., N.

As it holds

−ivjkn = −iη(j − 1)(−π

η
+ 2π
Nη

(n− 1)) = ivj
π

η
− 2πi

N
(j − 1)(n− 1),

it follows

C(kn, T ) ≈ e−αkn
1
π

ℜ

 N∑
j=1

e− 2πi
N (j−1)(n−1)xj

 , ...n = 1, ..., N.

the sum corresponds to a discrete Fourier transform of the sequence x1, ..., xN
and can be evaluated very efficiently using FFT. Carr and Madan suggest to
use

α = 1.5
N = 4096
η = 0.25.

We obtain simultaneously prices for the strikes exp(kn), n = 1, .., N . Because
the interval [k1, kN ] is large, in most practical cases, log(K) is inside. By (linear)
interpolation, we get the price for strike K.
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